ukr-models
commited on
Commit
·
3c903f5
1
Parent(s):
e4e7738
Upload get_predictions.py
Browse files- get_predictions.py +60 -0
get_predictions.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tokenize_uk
|
2 |
+
import torch
|
3 |
+
|
4 |
+
def get_word_predictions(model, tokenizer, texts, is_split_to_words=False, device='cpu'):
|
5 |
+
words_res = []
|
6 |
+
y_res = []
|
7 |
+
|
8 |
+
if not is_split_to_words:
|
9 |
+
texts = [tokenize_uk.tokenize_words(text) for text in texts]
|
10 |
+
|
11 |
+
for text in texts:
|
12 |
+
size = len(text)
|
13 |
+
idx_list = [idx + 1 for idx, val in enumerate(text) if val in ['.', '?', '!']]
|
14 |
+
if len(idx_list):
|
15 |
+
sents = [text[i: j] for i, j in zip([0] + idx_list, idx_list + ([size] if idx_list[-1] != size else []))]
|
16 |
+
else:
|
17 |
+
sents = [text]
|
18 |
+
|
19 |
+
y_res_x = []
|
20 |
+
words_res_x = []
|
21 |
+
for sent_tokens in sents:
|
22 |
+
tokenized_inputs = [101]
|
23 |
+
word_ids = [None]
|
24 |
+
for word_id, word in enumerate(sent_tokens):
|
25 |
+
word_tokens = tokenizer.encode(word)[1:-1]
|
26 |
+
tokenized_inputs += word_tokens
|
27 |
+
word_ids += [word_id]*len(word_tokens)
|
28 |
+
tokenized_inputs = tokenized_inputs[:(tokenizer.model_max_length-1)]
|
29 |
+
word_ids = word_ids[:(tokenizer.model_max_length-1)]
|
30 |
+
tokenized_inputs += [102]
|
31 |
+
word_ids += [None]
|
32 |
+
|
33 |
+
torch_tokenized_inputs = torch.tensor(tokenized_inputs).unsqueeze(0)
|
34 |
+
torch_attention_mask = torch.ones(torch_tokenized_inputs.shape)
|
35 |
+
predictions = model.forward(input_ids=torch_tokenized_inputs.to(device), attention_mask=torch_attention_mask.to(device))
|
36 |
+
predictions = torch.argmax(predictions.logits.squeeze(), axis=1).numpy()
|
37 |
+
predictions = [model.config.id2label[i] for i in predictions]
|
38 |
+
|
39 |
+
previous_word_idx = None
|
40 |
+
sent_words = []
|
41 |
+
predictions_words = []
|
42 |
+
word_tokens = []
|
43 |
+
first_pred = None
|
44 |
+
for i, word_idx in enumerate(word_ids):
|
45 |
+
if word_idx != previous_word_idx:
|
46 |
+
sent_words.append(tokenizer.decode(word_tokens))
|
47 |
+
word_tokens = [tokenized_inputs[i]]
|
48 |
+
predictions_words.append(first_pred)
|
49 |
+
first_pred = predictions[i]
|
50 |
+
else:
|
51 |
+
word_tokens.append(tokenized_inputs[i])
|
52 |
+
previous_word_idx = word_idx
|
53 |
+
|
54 |
+
words_res_x.extend(sent_words[1:])
|
55 |
+
y_res_x.extend(predictions_words[1:])
|
56 |
+
|
57 |
+
words_res.append(words_res_x)
|
58 |
+
y_res.append(y_res_x)
|
59 |
+
|
60 |
+
return words_res, y_res
|