--- license: agpl-3.0 tags: - generated_from_trainer datasets: - mim_gold_ner metrics: - precision - recall - f1 - accuracy model-index: - name: XLMR-ENIS-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: mim_gold_ner type: mim_gold_ner args: mim-gold-ner metrics: - name: Precision type: precision value: 0.8685291700903862 - name: Recall type: recall value: 0.841273450824332 - name: F1 type: f1 value: 0.8546840706942359 - name: Accuracy type: accuracy value: 0.9824748714976435 --- # XLMR-ENIS-finetuned-ner This model is a fine-tuned version of [vesteinn/XLMR-ENIS](https://huggingface.co/vesteinn/XLMR-ENIS) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0940 - Precision: 0.8685 - Recall: 0.8413 - F1: 0.8547 - Accuracy: 0.9825 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0564 | 1.0 | 2904 | 0.0943 | 0.8505 | 0.8118 | 0.8307 | 0.9798 | | 0.0321 | 2.0 | 5808 | 0.0907 | 0.8610 | 0.8235 | 0.8419 | 0.9814 | | 0.0198 | 3.0 | 8712 | 0.0940 | 0.8685 | 0.8413 | 0.8547 | 0.9825 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3