koukyo1994
commited on
upload LFQ implementation
Browse files
configuration_lfq_tokenizer.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Hugging Face compatible implementation of Open-MAGVIt2
|
3 |
+
Code reference: https://github.com/TencentARC/Open-MAGVIT2
|
4 |
+
"""
|
5 |
+
|
6 |
+
|
7 |
+
from transformers import PretrainedConfig
|
8 |
+
|
9 |
+
|
10 |
+
class EncoderDecoderConfig(PretrainedConfig):
|
11 |
+
model_type = "resnet_encoder_decoder"
|
12 |
+
|
13 |
+
def __init__(self, **kwargs):
|
14 |
+
super().__init__(**kwargs)
|
15 |
+
self.ch = kwargs.get("ch", 128)
|
16 |
+
self.in_channels = kwargs.get("in_channels", 3)
|
17 |
+
self.out_ch = kwargs.get("out_ch", 3)
|
18 |
+
self.z_channels = kwargs.get("z_channels", 18)
|
19 |
+
self.num_res_blocks = kwargs.get("num_res_blocks", 2)
|
20 |
+
self.ch_mult = kwargs.get("ch_mult", [1, 1, 2, 2, 4])
|
21 |
+
|
22 |
+
|
23 |
+
class QuantizerConfig(PretrainedConfig):
|
24 |
+
model_type = "lfq_quantizer"
|
25 |
+
|
26 |
+
def __init__(self, **kwargs):
|
27 |
+
super().__init__(**kwargs)
|
28 |
+
self.dim = kwargs.get("dim", 18)
|
29 |
+
self.codebook_size = kwargs.get("codebook_size", 262144)
|
30 |
+
self.batch_maximization_weight = kwargs.get("batch_maximization_weight", 1.0)
|
31 |
+
self.sample_minimization_weight = kwargs.get("sample_minimization_weight", 1.0)
|
32 |
+
|
33 |
+
|
34 |
+
class LFQTokenizerConfig(PretrainedConfig):
|
35 |
+
r"""
|
36 |
+
This is the configuration class to store the configuration of a :class:`~transform
|
37 |
+
"""
|
38 |
+
model_type = "lfq_tokenizer"
|
39 |
+
|
40 |
+
def __init__(self, **kwargs):
|
41 |
+
super().__init__(**kwargs)
|
42 |
+
self.encoder_decoder_config = kwargs.get("encoder_decoder_config", EncoderDecoderConfig())
|
43 |
+
self.quantizer_config = kwargs.get("quantizer_config", QuantizerConfig())
|