--- license: other tags: - merge - mergekit - lazymergekit - microsoft/Orca-2-13b - KoboldAI/LLaMA2-13B-Psyfighter2 base_model: - KoboldAI/LLaMA2-13B-Psyfighter2 - microsoft/Orca-2-13b license_name: microsoft-research-license model-index: - name: Psyfighter2-Orca2-13B-ties results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 62.46 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=tuantran1632001/Psyfighter2-Orca2-13B-ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 81.74 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=tuantran1632001/Psyfighter2-Orca2-13B-ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 60.31 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=tuantran1632001/Psyfighter2-Orca2-13B-ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 55.4 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=tuantran1632001/Psyfighter2-Orca2-13B-ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.27 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=tuantran1632001/Psyfighter2-Orca2-13B-ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 43.67 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=tuantran1632001/Psyfighter2-Orca2-13B-ties name: Open LLM Leaderboard --- # Psyfighter2-Orca2-ties Psyfighter2-Orca2-ties is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): * [KoboldAI/LLaMA2-13B-Psyfighter2](https://huggingface.co/KoboldAI/LLaMA2-13B-Psyfighter2) * [microsoft/Orca-2-13b](https://huggingface.co/microsoft/Orca-2-13b) This is my very first merge I have ever attempted. The motivation behind this merge is to try and create a 13B version of [jebcarter/psyonic-cetacean-20B](https://huggingface.co/jebcarter/psyonic-cetacean-20B). I don't have a good GPU (GTX 1660 6GB), so although I can merge the model, I cannot actually run it. However, the Open LLM Leaderboard ranks this merge with 63.48 avg point, which is higher than both KoboldAI/LLaMA2-13B-Psyfighter2 and jebcarter/psyonic-cetacean-20B, so I must did something right. The next step is to quantize this merge into GGUF so I can actually run it with [KoboldCpp](https://github.com/LostRuins/koboldcpp). ## 🧩 Configuration ```yaml models: - model: KoboldAI/LLaMA2-13B-Psyfighter2 - model: microsoft/Orca-2-13b parameters: density: 0.40 weight: [0, 0.3, 0.7, 1] merge_method: ties base_model: KoboldAI/LLaMA2-13B-Psyfighter2 parameters: normalize: true int8_mask: true dtype: float16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_tuantran1632001__Psyfighter2-Orca2-13B-ties) | Metric |Value| |---------------------------------|----:| |Avg. |63.48| |AI2 Reasoning Challenge (25-Shot)|62.46| |HellaSwag (10-Shot) |81.74| |MMLU (5-Shot) |60.31| |TruthfulQA (0-shot) |55.40| |Winogrande (5-shot) |77.27| |GSM8k (5-shot) |43.67|