File size: 3,897 Bytes
c075c16
8209234
 
 
 
 
 
 
c075c16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
---
thumbnail: "Аn open multilingual readability scoring model TRank"
base_model: "Peltarion/xlm-roberta-longformer-base-4096"
tags:
- arxiv:2406.01835
- Readability
- Multilingual
- Wikipedia
license: mit
language:
- yi
- xh
- fy
- cy
- vi
- uz
- ug
- ur
- uk
- tr
- th
- te
- ta
- sv
- sw
- su
- es
- so
- sl
- sk
- si
- sd
- sr
- gd
- sa
- ru
- ro
- pa
- pt
- pl
- fa
- ps
- om
- or
- 'no'
- ne
- mn
- mr
- ml
- ms
- mg
- mk
- lt
- lv
- la
- lo
- ky
- ku
- ko
- km
- kk
- kn
- jv
- ja
- it
- ga
- id
- is
- hu
- hi
- he
- ha
- gu
- el
- de
- ka
- gl
- fr
- fi
- tl
- et
- eo
- en
- nl
- da
- cs
- hr
- zh
- ca
- my
- bg
- br
- bs
- bn
- be
- eu
- az
- as
- hy
- ar
- am
- af
- sq
pipeline_tag: text-classification
---

# Open Multilingual Text Readability Scoring Model (TRank)

[![DOI:10.48550/arXiv.2406.01835](https://zenodo.org/badge/DOI/10.48550/arXiv.2406.01835.svg)](https://doi.org/10.48550/arXiv.2406.01835)
[![Readability Experiments repo](https://img.shields.io/badge/GitLab-repo-orange)](https://gitlab.wikimedia.org/repos/research/readability-experiments)

## Overview

This repository contains an open multilingual readability scoring model TRank, presented in the ACL'24 paper **An Open Multilingual System for Scoring Readability of Wikipedia**. 
The model is designed to evaluate the readability of text across multiple languages.

## Features

- **Multilingual Support**: Evaluates readability in multiple languages.
- **Pairwise Ranking**: Trained using a Siamese architecture with Margin Ranking Loss to differentiate and rank texts from hardest to simplest.
- **Long Context Window**: Utilizes the Longformer architecture of the base model, supporting inputs up to 4096 tokens. 

## Model Training

The model training implementation can be found in the [Readability Experiments repo](https://gitlab.wikimedia.org/repos/research/readability-experiments).

## Usage example
```
import torch
import torch.nn as nn
from transformers import AutoModel
from huggingface_hub import PyTorchModelHubMixin
from transformers import AutoTokenizer

# Define the model:
BASE_MODEL = "Peltarion/xlm-roberta-longformer-base-4096"
class ReadabilityModel(nn.Module, PyTorchModelHubMixin):
    def __init__(self, model_name=BASE_MODEL):
        super(ReadabilityModel, self).__init__()
        self.model = AutoModel.from_pretrained(model_name)
        self.drop = nn.Dropout(p=0.2)
        self.fc = nn.Linear(768, 1)

    def forward(self, ids, mask):
        out = self.model(input_ids=ids, attention_mask=mask,
                         output_hidden_states=False)
        out = self.drop(out[1])
        outputs = self.fc(out)

        return outputs
    
# Load the model:
model = ReadabilityModel.from_pretrained("trokhymovych/TRank_readability")

# Load the tokenizer:
tokenizer = AutoTokenizer.from_pretrained("trokhymovych/TRank_readability")

# Set the model to evaluation mode
model.eval()
# Example input text
input_text = "This is an example sentence to evaluate readability."
# Tokenize the input text
inputs = tokenizer.encode_plus(
    input_text,
    add_special_tokens=True,
    max_length=512,
    truncation=True,
    padding='max_length',
    return_tensors='pt'
)
ids = inputs['input_ids']
mask = inputs['attention_mask']

# Make prediction
with torch.no_grad():
    outputs = model(ids, mask)
    readability_score = outputs.item()
    
# Print the input text and the readability score
print(f"Input Text: {input_text}")
print(f"Readability Score: {readability_score}")
```


## Citation
Preprint:
```
@misc{trokhymovych2024openmultilingualscoringreadability,
      title={An Open Multilingual System for Scoring Readability of Wikipedia}, 
      author={Mykola Trokhymovych and Indira Sen and Martin Gerlach},
      year={2024},
      eprint={2406.01835},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2406.01835}, 
}
```