--- library_name: peft license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-peft-biobert-batch-size-32 results: [] --- # xlm-roberta-peft-biobert-batch-size-32 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: 0.0776 - Precision: 0.9512 - Recall: 0.9704 - F1: 0.9607 - Accuracy: 0.9817 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 2141 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 2.6809 | 0.0654 | 20 | 1.5258 | 0.0 | 0.0 | 0.0 | 0.6871 | | 1.5455 | 0.1307 | 40 | 1.4923 | 0.0 | 0.0 | 0.0 | 0.6871 | | 1.5288 | 0.1961 | 60 | 1.4191 | 0.0 | 0.0 | 0.0 | 0.6871 | | 1.1733 | 0.2614 | 80 | 0.7552 | 0.5851 | 0.5658 | 0.5753 | 0.8198 | | 0.6291 | 0.3268 | 100 | 0.3531 | 0.8134 | 0.8265 | 0.8199 | 0.9073 | | 0.394 | 0.3922 | 120 | 0.2030 | 0.8208 | 0.9050 | 0.8608 | 0.9414 | | 0.2909 | 0.4575 | 140 | 0.1666 | 0.8948 | 0.8982 | 0.8965 | 0.9522 | | 0.2146 | 0.5229 | 160 | 0.1519 | 0.8811 | 0.9427 | 0.9108 | 0.9593 | | 0.207 | 0.5882 | 180 | 0.1350 | 0.8979 | 0.9406 | 0.9187 | 0.9622 | | 0.1705 | 0.6536 | 200 | 0.1233 | 0.9056 | 0.9494 | 0.9270 | 0.9658 | | 0.1458 | 0.7190 | 220 | 0.1174 | 0.9170 | 0.9369 | 0.9268 | 0.9649 | | 0.1474 | 0.7843 | 240 | 0.1227 | 0.9011 | 0.9589 | 0.9291 | 0.9665 | | 0.1373 | 0.8497 | 260 | 0.1150 | 0.9220 | 0.9508 | 0.9361 | 0.9689 | | 0.1527 | 0.9150 | 280 | 0.1306 | 0.8912 | 0.9496 | 0.9195 | 0.9628 | | 0.1537 | 0.9804 | 300 | 0.0986 | 0.9304 | 0.9471 | 0.9387 | 0.9726 | | 0.1166 | 1.0458 | 320 | 0.0994 | 0.9295 | 0.9611 | 0.9450 | 0.9742 | | 0.1003 | 1.1111 | 340 | 0.1032 | 0.9258 | 0.9577 | 0.9415 | 0.9712 | | 0.1167 | 1.1765 | 360 | 0.0997 | 0.9277 | 0.9601 | 0.9436 | 0.9725 | | 0.1148 | 1.2418 | 380 | 0.0889 | 0.9327 | 0.9631 | 0.9477 | 0.9758 | | 0.125 | 1.3072 | 400 | 0.0882 | 0.9324 | 0.9533 | 0.9427 | 0.9740 | | 0.1099 | 1.3725 | 420 | 0.0961 | 0.9233 | 0.9414 | 0.9323 | 0.9704 | | 0.1025 | 1.4379 | 440 | 0.0841 | 0.9402 | 0.9624 | 0.9512 | 0.9772 | | 0.0964 | 1.5033 | 460 | 0.0799 | 0.9447 | 0.9638 | 0.9542 | 0.9773 | | 0.0975 | 1.5686 | 480 | 0.0879 | 0.9326 | 0.9667 | 0.9493 | 0.9751 | | 0.1015 | 1.6340 | 500 | 0.0865 | 0.9371 | 0.9592 | 0.9480 | 0.9758 | | 0.0828 | 1.6993 | 520 | 0.0987 | 0.9194 | 0.9728 | 0.9453 | 0.9731 | | 0.0956 | 1.7647 | 540 | 0.0919 | 0.9263 | 0.9584 | 0.9421 | 0.9754 | | 0.1052 | 1.8301 | 560 | 0.0925 | 0.9281 | 0.9751 | 0.9510 | 0.9755 | | 0.0885 | 1.8954 | 580 | 0.0900 | 0.9306 | 0.9694 | 0.9496 | 0.9749 | | 0.0921 | 1.9608 | 600 | 0.0897 | 0.9307 | 0.9663 | 0.9482 | 0.9750 | | 0.0788 | 2.0261 | 620 | 0.0854 | 0.9429 | 0.9643 | 0.9534 | 0.9774 | | 0.0804 | 2.0915 | 640 | 0.0826 | 0.9385 | 0.9694 | 0.9537 | 0.9788 | | 0.0684 | 2.1569 | 660 | 0.0747 | 0.9498 | 0.9631 | 0.9564 | 0.9802 | | 0.0786 | 2.2222 | 680 | 0.0872 | 0.9399 | 0.9693 | 0.9544 | 0.9783 | | 0.0846 | 2.2876 | 700 | 0.0931 | 0.9269 | 0.9664 | 0.9462 | 0.9747 | | 0.0693 | 2.3529 | 720 | 0.0818 | 0.9418 | 0.9721 | 0.9567 | 0.9795 | | 0.0749 | 2.4183 | 740 | 0.0906 | 0.9321 | 0.9732 | 0.9522 | 0.9756 | | 0.0986 | 2.4837 | 760 | 0.0762 | 0.9440 | 0.9677 | 0.9557 | 0.9783 | | 0.0776 | 2.5490 | 780 | 0.0786 | 0.9462 | 0.9712 | 0.9586 | 0.9799 | | 0.0719 | 2.6144 | 800 | 0.0778 | 0.9447 | 0.9711 | 0.9577 | 0.9798 | | 0.0641 | 2.6797 | 820 | 0.0812 | 0.9490 | 0.9684 | 0.9586 | 0.9792 | | 0.0737 | 2.7451 | 840 | 0.0819 | 0.9418 | 0.9695 | 0.9554 | 0.9778 | | 0.0731 | 2.8105 | 860 | 0.0767 | 0.9438 | 0.9725 | 0.9579 | 0.9798 | | 0.0716 | 2.8758 | 880 | 0.0761 | 0.9441 | 0.9719 | 0.9578 | 0.9798 | | 0.0704 | 2.9412 | 900 | 0.0775 | 0.9447 | 0.9670 | 0.9557 | 0.9783 | | 0.0706 | 3.0065 | 920 | 0.0738 | 0.9466 | 0.9738 | 0.9600 | 0.9814 | | 0.0492 | 3.0719 | 940 | 0.0754 | 0.9448 | 0.9710 | 0.9577 | 0.9804 | | 0.0601 | 3.1373 | 960 | 0.0873 | 0.9389 | 0.9729 | 0.9556 | 0.9776 | | 0.053 | 3.2026 | 980 | 0.0737 | 0.9469 | 0.9684 | 0.9576 | 0.9805 | | 0.0582 | 3.2680 | 1000 | 0.0833 | 0.9406 | 0.9689 | 0.9546 | 0.9784 | | 0.0588 | 3.3333 | 1020 | 0.0728 | 0.9446 | 0.9703 | 0.9573 | 0.9806 | | 0.0505 | 3.3987 | 1040 | 0.0818 | 0.9400 | 0.9765 | 0.9579 | 0.9798 | | 0.0637 | 3.4641 | 1060 | 0.0864 | 0.9327 | 0.9681 | 0.9501 | 0.9766 | | 0.0545 | 3.5294 | 1080 | 0.0792 | 0.9418 | 0.9660 | 0.9537 | 0.9782 | | 0.0548 | 3.5948 | 1100 | 0.0822 | 0.9440 | 0.9730 | 0.9583 | 0.9785 | | 0.0467 | 3.6601 | 1120 | 0.0742 | 0.9491 | 0.9725 | 0.9606 | 0.9816 | | 0.0613 | 3.7255 | 1140 | 0.0731 | 0.9542 | 0.9727 | 0.9634 | 0.9822 | | 0.0547 | 3.7908 | 1160 | 0.0766 | 0.9502 | 0.9725 | 0.9612 | 0.9816 | | 0.0668 | 3.8562 | 1180 | 0.0822 | 0.9424 | 0.9690 | 0.9555 | 0.9786 | | 0.066 | 3.9216 | 1200 | 0.0800 | 0.9464 | 0.9706 | 0.9583 | 0.9795 | | 0.0662 | 3.9869 | 1220 | 0.0751 | 0.9460 | 0.9700 | 0.9578 | 0.9809 | | 0.0461 | 4.0523 | 1240 | 0.0754 | 0.9491 | 0.9715 | 0.9602 | 0.9816 | | 0.0382 | 4.1176 | 1260 | 0.0808 | 0.9411 | 0.9704 | 0.9555 | 0.9799 | | 0.0447 | 4.1830 | 1280 | 0.0755 | 0.9521 | 0.9692 | 0.9606 | 0.9813 | | 0.0489 | 4.2484 | 1300 | 0.0751 | 0.9503 | 0.9701 | 0.9601 | 0.9812 | | 0.0486 | 4.3137 | 1320 | 0.0724 | 0.9552 | 0.9667 | 0.9609 | 0.9814 | | 0.0448 | 4.3791 | 1340 | 0.0728 | 0.9509 | 0.9701 | 0.9604 | 0.9811 | | 0.036 | 4.4444 | 1360 | 0.0764 | 0.9470 | 0.9708 | 0.9588 | 0.9812 | | 0.0349 | 4.5098 | 1380 | 0.0745 | 0.9503 | 0.9666 | 0.9584 | 0.9812 | | 0.0495 | 4.5752 | 1400 | 0.0743 | 0.9476 | 0.9687 | 0.9580 | 0.9814 | | 0.048 | 4.6405 | 1420 | 0.0760 | 0.9452 | 0.9726 | 0.9587 | 0.9804 | | 0.0395 | 4.7059 | 1440 | 0.0776 | 0.9430 | 0.9688 | 0.9558 | 0.9791 | | 0.0553 | 4.7712 | 1460 | 0.0778 | 0.9436 | 0.9714 | 0.9573 | 0.9801 | | 0.0389 | 4.8366 | 1480 | 0.0744 | 0.9527 | 0.9698 | 0.9612 | 0.9814 | | 0.0496 | 4.9020 | 1500 | 0.0816 | 0.9432 | 0.9753 | 0.9590 | 0.9798 | | 0.0501 | 4.9673 | 1520 | 0.0729 | 0.9485 | 0.9698 | 0.9590 | 0.9811 | | 0.0394 | 5.0327 | 1540 | 0.0786 | 0.9444 | 0.9707 | 0.9574 | 0.9801 | | 0.0344 | 5.0980 | 1560 | 0.0740 | 0.9503 | 0.9716 | 0.9608 | 0.9814 | | 0.0393 | 5.1634 | 1580 | 0.0760 | 0.9509 | 0.9737 | 0.9622 | 0.9817 | | 0.031 | 5.2288 | 1600 | 0.0829 | 0.9398 | 0.9691 | 0.9542 | 0.9789 | | 0.0317 | 5.2941 | 1620 | 0.0768 | 0.9510 | 0.9664 | 0.9586 | 0.9802 | | 0.0327 | 5.3595 | 1640 | 0.0796 | 0.9480 | 0.9716 | 0.9597 | 0.9809 | | 0.0317 | 5.4248 | 1660 | 0.0746 | 0.9511 | 0.9683 | 0.9596 | 0.9815 | | 0.0424 | 5.4902 | 1680 | 0.0776 | 0.9466 | 0.9701 | 0.9582 | 0.9808 | | 0.0383 | 5.5556 | 1700 | 0.0736 | 0.9533 | 0.9706 | 0.9619 | 0.9823 | | 0.041 | 5.6209 | 1720 | 0.0804 | 0.9448 | 0.9669 | 0.9557 | 0.9797 | | 0.0361 | 5.6863 | 1740 | 0.0729 | 0.9524 | 0.9667 | 0.9595 | 0.9811 | | 0.0362 | 5.7516 | 1760 | 0.0765 | 0.9449 | 0.9664 | 0.9555 | 0.9802 | | 0.0293 | 5.8170 | 1780 | 0.0743 | 0.9512 | 0.9681 | 0.9596 | 0.9812 | | 0.0391 | 5.8824 | 1800 | 0.0762 | 0.9491 | 0.9673 | 0.9581 | 0.9806 | | 0.0282 | 5.9477 | 1820 | 0.0767 | 0.9507 | 0.9664 | 0.9585 | 0.9808 | | 0.0375 | 6.0131 | 1840 | 0.0784 | 0.9502 | 0.9683 | 0.9592 | 0.9810 | | 0.0307 | 6.0784 | 1860 | 0.0767 | 0.9517 | 0.9690 | 0.9603 | 0.9813 | | 0.0279 | 6.1438 | 1880 | 0.0793 | 0.9461 | 0.9656 | 0.9557 | 0.9800 | | 0.0247 | 6.2092 | 1900 | 0.0810 | 0.9458 | 0.9664 | 0.9560 | 0.9799 | | 0.0346 | 6.2745 | 1920 | 0.0783 | 0.9496 | 0.9690 | 0.9592 | 0.9812 | | 0.0286 | 6.3399 | 1940 | 0.0781 | 0.9489 | 0.9683 | 0.9585 | 0.9811 | | 0.0258 | 6.4052 | 1960 | 0.0779 | 0.9486 | 0.9686 | 0.9585 | 0.9811 | | 0.0268 | 6.4706 | 1980 | 0.0790 | 0.9482 | 0.9693 | 0.9586 | 0.9811 | | 0.0274 | 6.5359 | 2000 | 0.0785 | 0.9500 | 0.9708 | 0.9603 | 0.9816 | | 0.0325 | 6.6013 | 2020 | 0.0773 | 0.9502 | 0.9686 | 0.9593 | 0.9815 | | 0.0243 | 6.6667 | 2040 | 0.0775 | 0.9506 | 0.9673 | 0.9589 | 0.9813 | | 0.0278 | 6.7320 | 2060 | 0.0780 | 0.9497 | 0.9681 | 0.9588 | 0.9813 | | 0.0358 | 6.7974 | 2080 | 0.0771 | 0.9515 | 0.9692 | 0.9603 | 0.9817 | | 0.0241 | 6.8627 | 2100 | 0.0778 | 0.9514 | 0.9697 | 0.9604 | 0.9816 | | 0.0289 | 6.9281 | 2120 | 0.0779 | 0.9511 | 0.9705 | 0.9607 | 0.9817 | | 0.0233 | 6.9935 | 2140 | 0.0776 | 0.9512 | 0.9704 | 0.9607 | 0.9817 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3