File size: 2,689 Bytes
ac92e58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5690279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac92e58
 
 
 
 
 
 
5a56d07
 
ac92e58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-en
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: xtreme
      type: xtreme
      args: PAN-X.en
    metrics:
    - name: F1
      type: f1
      value: 0.69816564758199
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: xtreme
      type: xtreme
      config: PAN-X.en
      split: validation
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8077777409408878
      verified: true
    - name: Precision
      type: precision
      value: 0.8119996350614693
      verified: true
    - name: Recall
      type: recall
      value: 0.8184775611550488
      verified: true
    - name: F1
      type: f1
      value: 0.8152257296282303
      verified: true
    - name: loss
      type: loss
      value: 0.6114959120750427
      verified: true
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-roberta-base-finetuned-panx-en

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the PAN-X dataset. The model is trained in Chapter 4: Multilingual Named Entity Recognition in the [NLP with Transformers book](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). You can find the full code in the accompanying [Github repository](https://github.com/nlp-with-transformers/notebooks/blob/main/04_multilingual-ner.ipynb).

It achieves the following results on the evaluation set:
- Loss: 0.3676
- F1: 0.6982

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.026         | 1.0   | 50   | 0.5734          | 0.4901 |
| 0.4913        | 2.0   | 100  | 0.3870          | 0.6696 |
| 0.3734        | 3.0   | 150  | 0.3676          | 0.6982 |


### Framework versions

- Transformers 4.12.0.dev0
- Pytorch 1.9.1+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3