--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8645910410381922 - task: type: token-classification name: Token Classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation metrics: - name: Accuracy type: accuracy value: 0.889645142153642 verified: true - name: Precision type: precision value: 0.8938697948618197 verified: true - name: Recall type: recall value: 0.9118661660103184 verified: true - name: F1 type: f1 value: 0.9027783024926896 verified: true - name: loss type: loss value: 0.4599001109600067 verified: true --- # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the PAN-X dataset. The model is trained in Chapter 4: Multilingual Named Entity Recognition in the [NLP with Transformers book](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). You can find the full code in the accompanying [Github repository](https://github.com/nlp-with-transformers/notebooks/blob/main/04_multilingual-ner.ipynb). It achieves the following results on the evaluation set: - Loss: 0.1388 - F1: 0.8646 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2652 | 1.0 | 525 | 0.1602 | 0.8230 | | 0.1314 | 2.0 | 1050 | 0.1372 | 0.8527 | | 0.0806 | 3.0 | 1575 | 0.1388 | 0.8646 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3