torinriley
commited on
Update handler.py
Browse files- handler.py +43 -35
handler.py
CHANGED
@@ -1,64 +1,72 @@
|
|
1 |
import torch
|
2 |
-
from
|
|
|
3 |
from PIL import Image
|
4 |
import io
|
5 |
-
import os
|
6 |
|
7 |
-
|
|
|
|
|
|
|
8 |
|
9 |
class EndpointHandler:
|
10 |
def __init__(self, path: str = ""):
|
11 |
"""
|
12 |
-
Initialize the handler
|
13 |
"""
|
14 |
-
|
15 |
-
self.model_weights_path = os.path.join(path, "model.pt")
|
16 |
-
|
17 |
-
|
18 |
-
self.model = get_model(num_classes=4)
|
19 |
-
checkpoint = torch.load(self.model_weights_path, map_location=self.device)
|
20 |
self.model.load_state_dict(checkpoint["model_state_dict"])
|
21 |
-
self.model.to(self.device)
|
22 |
self.model.eval()
|
23 |
|
24 |
-
#
|
25 |
-
self.
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
def __call__(self, data):
|
31 |
"""
|
32 |
-
Process incoming binary image data
|
33 |
"""
|
34 |
try:
|
35 |
-
|
36 |
-
image_bytes = data.get("body", b"")
|
37 |
-
if not image_bytes:
|
38 |
return {"error": "No image data provided in request."}
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
input_tensor = self.transform(image).unsqueeze(0).to(self.device)
|
45 |
-
|
46 |
|
|
|
47 |
with torch.no_grad():
|
48 |
-
predictions = self.model(
|
49 |
|
50 |
-
|
51 |
boxes = predictions[0]["boxes"].cpu().tolist()
|
52 |
labels = predictions[0]["labels"].cpu().tolist()
|
53 |
scores = predictions[0]["scores"].cpu().tolist()
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
62 |
|
63 |
return {"predictions": results}
|
64 |
except Exception as e:
|
|
|
1 |
import torch
|
2 |
+
from model import get_model
|
3 |
+
from torchvision.transforms import ToTensor
|
4 |
from PIL import Image
|
5 |
import io
|
|
|
6 |
|
7 |
+
# Constants
|
8 |
+
NUM_CLASSES = 4
|
9 |
+
CONFIDENCE_THRESHOLD = 0.5
|
10 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
|
12 |
class EndpointHandler:
|
13 |
def __init__(self, path: str = ""):
|
14 |
"""
|
15 |
+
Initialize the handler: load the model.
|
16 |
"""
|
17 |
+
# Load the model
|
18 |
+
self.model_weights_path = os.path.join(path, "model.pt")
|
19 |
+
self.model = get_model(NUM_CLASSES).to(DEVICE)
|
20 |
+
checkpoint = torch.load(self.model_weights_path, map_location=DEVICE)
|
|
|
|
|
21 |
self.model.load_state_dict(checkpoint["model_state_dict"])
|
|
|
22 |
self.model.eval()
|
23 |
|
24 |
+
# Preprocessing function
|
25 |
+
self.preprocess = ToTensor()
|
26 |
+
|
27 |
+
# Class labels
|
28 |
+
self.label_map = {1: "yellow", 2: "red", 3: "blue"}
|
29 |
+
|
30 |
+
def preprocess_frame(self, image_bytes):
|
31 |
+
"""
|
32 |
+
Convert raw binary image data to a tensor.
|
33 |
+
"""
|
34 |
+
# Load image from binary data
|
35 |
+
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
36 |
+
image_tensor = self.preprocess(image).unsqueeze(0).to(DEVICE)
|
37 |
+
return image_tensor
|
38 |
|
39 |
def __call__(self, data):
|
40 |
"""
|
41 |
+
Process incoming raw binary image data.
|
42 |
"""
|
43 |
try:
|
44 |
+
if "body" not in data:
|
|
|
|
|
45 |
return {"error": "No image data provided in request."}
|
46 |
|
47 |
+
image_bytes = data["body"]
|
48 |
+
image_tensor = self.preprocess_frame(image_bytes)
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
# Perform inference
|
51 |
with torch.no_grad():
|
52 |
+
predictions = self.model(image_tensor)
|
53 |
|
54 |
+
# Extract predictions
|
55 |
boxes = predictions[0]["boxes"].cpu().tolist()
|
56 |
labels = predictions[0]["labels"].cpu().tolist()
|
57 |
scores = predictions[0]["scores"].cpu().tolist()
|
58 |
|
59 |
+
# Filter predictions by confidence threshold
|
60 |
+
results = []
|
61 |
+
for box, label, score in zip(boxes, labels, scores):
|
62 |
+
if score >= CONFIDENCE_THRESHOLD:
|
63 |
+
x1, y1, x2, y2 = map(int, box)
|
64 |
+
label_text = self.label_map.get(label, "unknown")
|
65 |
+
results.append({
|
66 |
+
"box": [x1, y1, x2, y2],
|
67 |
+
"label": label_text,
|
68 |
+
"score": round(score, 2)
|
69 |
+
})
|
70 |
|
71 |
return {"predictions": results}
|
72 |
except Exception as e:
|