torinriley
commited on
Update handler.py
Browse files- handler.py +3 -10
handler.py
CHANGED
@@ -4,7 +4,6 @@ from torchvision import transforms
|
|
4 |
from PIL import Image
|
5 |
import io
|
6 |
|
7 |
-
# Import your Faster R-CNN model definition
|
8 |
from model import get_model
|
9 |
|
10 |
class EndpointHandler:
|
@@ -13,10 +12,10 @@ class EndpointHandler:
|
|
13 |
Initialize the handler. Load the Faster R-CNN model.
|
14 |
"""
|
15 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
-
self.model_weights_path = os.path.join(path, "model.pt")
|
17 |
|
18 |
# Load the model
|
19 |
-
self.model = get_model(num_classes=4)
|
20 |
print(f"Loading weights from: {self.model_weights_path}")
|
21 |
checkpoint = torch.load(self.model_weights_path, map_location=self.device)
|
22 |
self.model.load_state_dict(checkpoint["model_state_dict"])
|
@@ -25,7 +24,7 @@ class EndpointHandler:
|
|
25 |
|
26 |
# Define image preprocessing
|
27 |
self.transform = transforms.Compose([
|
28 |
-
transforms.Resize((640, 640)),
|
29 |
transforms.ToTensor(),
|
30 |
])
|
31 |
|
@@ -34,27 +33,21 @@ class EndpointHandler:
|
|
34 |
Process the incoming request and return object detection predictions.
|
35 |
"""
|
36 |
try:
|
37 |
-
# Expect input data to include a Base64-encoded image
|
38 |
if "image" not in data:
|
39 |
return [{"error": "No 'image' provided in request."}]
|
40 |
|
41 |
-
# Convert Base64-encoded image to bytes
|
42 |
image_bytes = data["image"].encode("latin1")
|
43 |
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
44 |
|
45 |
-
# Preprocess the image
|
46 |
input_tensor = self.transform(image).unsqueeze(0).to(self.device)
|
47 |
|
48 |
-
# Run inference
|
49 |
with torch.no_grad():
|
50 |
outputs = self.model(input_tensor)
|
51 |
|
52 |
-
# Extract results
|
53 |
boxes = outputs[0]["boxes"].cpu().tolist()
|
54 |
labels = outputs[0]["labels"].cpu().tolist()
|
55 |
scores = outputs[0]["scores"].cpu().tolist()
|
56 |
|
57 |
-
# Confidence threshold
|
58 |
threshold = 0.5
|
59 |
predictions = [
|
60 |
{"box": box, "label": label, "score": score}
|
|
|
4 |
from PIL import Image
|
5 |
import io
|
6 |
|
|
|
7 |
from model import get_model
|
8 |
|
9 |
class EndpointHandler:
|
|
|
12 |
Initialize the handler. Load the Faster R-CNN model.
|
13 |
"""
|
14 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
self.model_weights_path = os.path.join(path, "model.pt")
|
16 |
|
17 |
# Load the model
|
18 |
+
self.model = get_model(num_classes=4)
|
19 |
print(f"Loading weights from: {self.model_weights_path}")
|
20 |
checkpoint = torch.load(self.model_weights_path, map_location=self.device)
|
21 |
self.model.load_state_dict(checkpoint["model_state_dict"])
|
|
|
24 |
|
25 |
# Define image preprocessing
|
26 |
self.transform = transforms.Compose([
|
27 |
+
transforms.Resize((640, 640)),
|
28 |
transforms.ToTensor(),
|
29 |
])
|
30 |
|
|
|
33 |
Process the incoming request and return object detection predictions.
|
34 |
"""
|
35 |
try:
|
|
|
36 |
if "image" not in data:
|
37 |
return [{"error": "No 'image' provided in request."}]
|
38 |
|
|
|
39 |
image_bytes = data["image"].encode("latin1")
|
40 |
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
41 |
|
|
|
42 |
input_tensor = self.transform(image).unsqueeze(0).to(self.device)
|
43 |
|
|
|
44 |
with torch.no_grad():
|
45 |
outputs = self.model(input_tensor)
|
46 |
|
|
|
47 |
boxes = outputs[0]["boxes"].cpu().tolist()
|
48 |
labels = outputs[0]["labels"].cpu().tolist()
|
49 |
scores = outputs[0]["scores"].cpu().tolist()
|
50 |
|
|
|
51 |
threshold = 0.5
|
52 |
predictions = [
|
53 |
{"box": box, "label": label, "score": score}
|