torinriley
commited on
Update helper.py
Browse files
helper.py
CHANGED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torchvision import transforms
|
3 |
+
from PIL import Image
|
4 |
+
import io
|
5 |
+
|
6 |
+
MODEL_PATH = "model_checkpoint.pt"
|
7 |
+
NUM_CLASSES = 4
|
8 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
|
10 |
+
# Load Faster R-CNN model
|
11 |
+
def load_model(model_path, num_classes):
|
12 |
+
from torchvision.models.detection import fasterrcnn_resnet50_fpn
|
13 |
+
model = fasterrcnn_resnet50_fpn(pretrained=False, num_classes=num_classes)
|
14 |
+
checkpoint = torch.load(model_path, map_location=DEVICE)
|
15 |
+
model.load_state_dict(checkpoint["model_state_dict"])
|
16 |
+
model.to(DEVICE)
|
17 |
+
model.eval()
|
18 |
+
return model
|
19 |
+
|
20 |
+
transform = transforms.Compose([
|
21 |
+
transforms.Resize((640, 640)),
|
22 |
+
transforms.ToTensor(),
|
23 |
+
])
|
24 |
+
|
25 |
+
model = load_model(MODEL_PATH, NUM_CLASSES)
|
26 |
+
|
27 |
+
def detect_objects(image_bytes):
|
28 |
+
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
29 |
+
input_tensor = transform(image).unsqueeze(0).to(DEVICE)
|
30 |
+
|
31 |
+
with torch.no_grad():
|
32 |
+
predictions = model(input_tensor)
|
33 |
+
|
34 |
+
boxes = predictions[0]["boxes"].cpu().tolist()
|
35 |
+
labels = predictions[0]["labels"].cpu().tolist()
|
36 |
+
scores = predictions[0]["scores"].cpu().tolist()
|
37 |
+
|
38 |
+
confidence_threshold = 0.5
|
39 |
+
results = [
|
40 |
+
{"box": box, "label": label, "score": score}
|
41 |
+
for box, label, score in zip(boxes, labels, scores)
|
42 |
+
if score > confidence_threshold
|
43 |
+
]
|
44 |
+
|
45 |
+
return {"predictions": results}
|
46 |
+
|
47 |
+
def inference(payload):
|
48 |
+
try:
|
49 |
+
if "image" not in payload:
|
50 |
+
return {"error": "No image provided. Please send an image."}
|
51 |
+
|
52 |
+
image_bytes = payload["image"].encode("latin1")
|
53 |
+
|
54 |
+
results = detect_objects(image_bytes)
|
55 |
+
return results
|
56 |
+
except Exception as e:
|
57 |
+
return {"error": str(e)}
|