File size: 1,725 Bytes
261f0bb b60bc2c 261f0bb 2352b43 3bc8743 b60bc2c 3bc8743 2352b43 3bc8743 261f0bb 3bc8743 b60bc2c 3bc8743 b60bc2c 3bc8743 261f0bb 3bc8743 261f0bb 71d4ac6 261f0bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: celebrity-classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Celebrity Classifier
## Model description
This model classifies a face to a celebrity. It is trained on [tonyassi/celebrity-1000](https://huggingface.co/datasets/tonyassi/celebrity-1000) dataset and fine-tuned on [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k).
## Dataset description
[tonyassi/celebrity-1000](https://huggingface.co/datasets/tonyassi/celebrity-1000)
Top 1000 celebrities. 18,184 images. 256x256. Square cropped to face.
### How to use
```python
from transformers import pipeline
# Initialize image classification pipeline
pipe = pipeline("image-classification", model="tonyassi/celebrity-classifier")
# Perform classification
result = pipe('image.png')
# Print results
print(result)
```
## Training and evaluation data
It achieves the following results on the evaluation set:
- Loss: 0.9089
- Accuracy: 0.7982
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
|