---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:MultipleNegativesRankingLoss
- loss:ContrastiveLoss
base_model: sentence-transformers/stsb-distilbert-base
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
- average_precision
- f1
- precision
- recall
- threshold
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
widget:
- source_sentence: What is Mindset?
sentences:
- What is a mindset?
- Can you eat only once a day?
- Is law a good career choice?
- source_sentence: Is a queef real?
sentences:
- Is "G" based on real events?
- What is the entire court process?
- How do I reduce my weight?
- source_sentence: Is Cicret a scam?
sentences:
- Is the Cicret Bracelet a scam?
- Was World War II Inevitable?
- What are some of the best photos?
- source_sentence: What is Planet X?
sentences:
- Do planet X exist?
- What are the best C++ books?
- How can I lose my weight fast?
- source_sentence: How fast is fast?
sentences:
- How does light travel so fast?
- How do I copyright my books?
- What is a black hole made of?
pipeline_tag: sentence-similarity
co2_eq_emissions:
emissions: 32.724475965905576
energy_consumed: 0.08418911136527617
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.399
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on sentence-transformers/stsb-distilbert-base
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: quora duplicates
type: quora-duplicates
metrics:
- type: cosine_accuracy
value: 0.846
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7969297170639038
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.7791495198902607
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7139598727226257
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.6977886977886978
name: Cosine Precision
- type: cosine_recall
value: 0.8819875776397516
name: Cosine Recall
- type: cosine_ap
value: 0.8230449963294564
name: Cosine Ap
- type: dot_accuracy
value: 0.843
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 151.2908477783203
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.7660818713450294
name: Dot F1
- type: dot_f1_threshold
value: 143.77838134765625
name: Dot F1 Threshold
- type: dot_precision
value: 0.7237569060773481
name: Dot Precision
- type: dot_recall
value: 0.8136645962732919
name: Dot Recall
- type: dot_ap
value: 0.7946044629726107
name: Dot Ap
- type: manhattan_accuracy
value: 0.838
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 194.99119567871094
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.7704081632653061
name: Manhattan F1
- type: manhattan_f1_threshold
value: 247.49777221679688
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.6536796536796536
name: Manhattan Precision
- type: manhattan_recall
value: 0.937888198757764
name: Manhattan Recall
- type: manhattan_ap
value: 0.8149715271935773
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.841
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 9.02225112915039
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.7703889585947302
name: Euclidean F1
- type: euclidean_f1_threshold
value: 11.385245323181152
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.6463157894736842
name: Euclidean Precision
- type: euclidean_recall
value: 0.953416149068323
name: Euclidean Recall
- type: euclidean_ap
value: 0.8152967320117391
name: Euclidean Ap
- type: max_accuracy
value: 0.846
name: Max Accuracy
- type: max_accuracy_threshold
value: 194.99119567871094
name: Max Accuracy Threshold
- type: max_f1
value: 0.7791495198902607
name: Max F1
- type: max_f1_threshold
value: 247.49777221679688
name: Max F1 Threshold
- type: max_precision
value: 0.7237569060773481
name: Max Precision
- type: max_recall
value: 0.953416149068323
name: Max Recall
- type: max_ap
value: 0.8230449963294564
name: Max Ap
- task:
type: paraphrase-mining
name: Paraphrase Mining
dataset:
name: quora duplicates dev
type: quora-duplicates-dev
metrics:
- type: average_precision
value: 0.5888649029434471
name: Average Precision
- type: f1
value: 0.5761652140962487
name: F1
- type: precision
value: 0.5477552123204396
name: Precision
- type: recall
value: 0.6076834690513064
name: Recall
- type: threshold
value: 0.7728720009326935
name: Threshold
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.963
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9906
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9944
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9982
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.963
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.4285333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.27568000000000004
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.14494
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8299562338609103
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9590366552956846
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9806221849555673
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9925738410935468
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9784033087450696
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9771579365079368
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9709189650394419
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.9514
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.9852
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.991
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9968
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.9514
name: Dot Precision@1
- type: dot_precision@3
value: 0.4247333333333334
name: Dot Precision@3
- type: dot_precision@5
value: 0.27364
name: Dot Precision@5
- type: dot_precision@10
value: 0.14458000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.8194380520427287
name: Dot Recall@1
- type: dot_recall@3
value: 0.9520212390452685
name: Dot Recall@3
- type: dot_recall@5
value: 0.9755502441186265
name: Dot Recall@5
- type: dot_recall@10
value: 0.9910547306614953
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9715023430522326
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.9692583333333334
name: Dot Mrr@10
- type: dot_map@100
value: 0.961739772177385
name: Dot Map@100
---
# SentenceTransformer based on sentence-transformers/stsb-distilbert-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base) on the [mnrl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) and [cl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- [mnrl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
- [cl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
- **Language:** en
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/stsb-distilbert-base-mnrl-cl-multi")
# Run inference
sentences = [
'How fast is fast?',
'How does light travel so fast?',
'How do I copyright my books?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `quora-duplicates`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:----------|
| cosine_accuracy | 0.846 |
| cosine_accuracy_threshold | 0.7969 |
| cosine_f1 | 0.7791 |
| cosine_f1_threshold | 0.714 |
| cosine_precision | 0.6978 |
| cosine_recall | 0.882 |
| cosine_ap | 0.823 |
| dot_accuracy | 0.843 |
| dot_accuracy_threshold | 151.2908 |
| dot_f1 | 0.7661 |
| dot_f1_threshold | 143.7784 |
| dot_precision | 0.7238 |
| dot_recall | 0.8137 |
| dot_ap | 0.7946 |
| manhattan_accuracy | 0.838 |
| manhattan_accuracy_threshold | 194.9912 |
| manhattan_f1 | 0.7704 |
| manhattan_f1_threshold | 247.4978 |
| manhattan_precision | 0.6537 |
| manhattan_recall | 0.9379 |
| manhattan_ap | 0.815 |
| euclidean_accuracy | 0.841 |
| euclidean_accuracy_threshold | 9.0223 |
| euclidean_f1 | 0.7704 |
| euclidean_f1_threshold | 11.3852 |
| euclidean_precision | 0.6463 |
| euclidean_recall | 0.9534 |
| euclidean_ap | 0.8153 |
| max_accuracy | 0.846 |
| max_accuracy_threshold | 194.9912 |
| max_f1 | 0.7791 |
| max_f1_threshold | 247.4978 |
| max_precision | 0.7238 |
| max_recall | 0.9534 |
| **max_ap** | **0.823** |
#### Paraphrase Mining
* Dataset: `quora-duplicates-dev`
* Evaluated with [ParaphraseMiningEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.ParaphraseMiningEvaluator)
| Metric | Value |
|:----------------------|:-----------|
| **average_precision** | **0.5889** |
| f1 | 0.5762 |
| precision | 0.5478 |
| recall | 0.6077 |
| threshold | 0.7729 |
#### Information Retrieval
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.963 |
| cosine_accuracy@3 | 0.9906 |
| cosine_accuracy@5 | 0.9944 |
| cosine_accuracy@10 | 0.9982 |
| cosine_precision@1 | 0.963 |
| cosine_precision@3 | 0.4285 |
| cosine_precision@5 | 0.2757 |
| cosine_precision@10 | 0.1449 |
| cosine_recall@1 | 0.83 |
| cosine_recall@3 | 0.959 |
| cosine_recall@5 | 0.9806 |
| cosine_recall@10 | 0.9926 |
| cosine_ndcg@10 | 0.9784 |
| cosine_mrr@10 | 0.9772 |
| **cosine_map@100** | **0.9709** |
| dot_accuracy@1 | 0.9514 |
| dot_accuracy@3 | 0.9852 |
| dot_accuracy@5 | 0.991 |
| dot_accuracy@10 | 0.9968 |
| dot_precision@1 | 0.9514 |
| dot_precision@3 | 0.4247 |
| dot_precision@5 | 0.2736 |
| dot_precision@10 | 0.1446 |
| dot_recall@1 | 0.8194 |
| dot_recall@3 | 0.952 |
| dot_recall@5 | 0.9756 |
| dot_recall@10 | 0.9911 |
| dot_ndcg@10 | 0.9715 |
| dot_mrr@10 | 0.9693 |
| dot_map@100 | 0.9617 |
## Training Details
### Training Datasets
#### mnrl
* Dataset: [mnrl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
* Size: 100,000 training samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details |
Why in India do we not have one on one political debate as in USA?
| Why cant we have a public debate between politicians in India like the one in US?
| Can people on Quora stop India Pakistan debate? We are sick and tired seeing this everyday in bulk?
|
| What is OnePlus One?
| How is oneplus one?
| Why is OnePlus One so good?
|
| Does our mind control our emotions?
| How do smart and successful people control their emotions?
| How can I control my positive emotions for the people whom I love but they don't care about me?
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### cl
* Dataset: [cl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
* Size: 100,000 training samples
* Columns: sentence1
, sentence2
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | What is the step by step guide to invest in share market in india?
| What is the step by step guide to invest in share market?
| 0
|
| What is the story of Kohinoor (Koh-i-Noor) Diamond?
| What would happen if the Indian government stole the Kohinoor (Koh-i-Noor) diamond back?
| 0
|
| How can I increase the speed of my internet connection while using a VPN?
| How can Internet speed be increased by hacking through DNS?
| 0
|
* Loss: [ContrastiveLoss
](https://sbert.net/docs/package_reference/losses.html#contrastiveloss) with these parameters:
```json
{
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
"margin": 0.5,
"size_average": true
}
```
### Evaluation Datasets
#### mnrl
* Dataset: [mnrl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
* Size: 1,000 evaluation samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | Which programming language is best for developing low-end games?
| What coding language should I learn first for making games?
| I am entering the world of video game programming and want to know what language I should learn? Because there are so many languages ​​I do not know which one to start with. Can you recommend a language that's easy to learn and can be used with many platforms?
|
| Was it appropriate for Meryl Streep to use her Golden Globes speech to attack Donald Trump?
| Should Meryl Streep be using her position to attack the president?
| Why did Kelly Ann Conway say that Meryl Streep incited peoples worst feelings?
|
| Where can I found excellent commercial fridges in Sydney?
| Where can I found impressive range of commercial fridges in Sydney?
| What is the best grocery delivery service in Sydney?
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### cl
* Dataset: [cl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
* Size: 1,000 evaluation samples
* Columns: sentence1
, sentence2
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | What should I ask my friend to get from UK to India?
| What is the process of getting a surgical residency in UK after completing MBBS from India?
| 0
|
| How can I learn hacking for free?
| How can I learn to hack seriously?
| 1
|
| Which is the best website to learn programming language C++?
| Which is the best website to learn C++ Programming language for free?
| 0
|
* Loss: [ContrastiveLoss
](https://sbert.net/docs/package_reference/losses.html#contrastiveloss) with these parameters:
```json
{
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
"margin": 0.5,
"size_average": true
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters