--- language: - en license: apache-2.0 tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:3012496 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: how to sign legal documents as power of attorney? sentences: - 'After the principal''s name, write “by” and then sign your own name. Under or after the signature line, indicate your status as POA by including any of the following identifiers: as POA, as Agent, as Attorney in Fact or as Power of Attorney.' - '[''From the Home screen, swipe left to Apps.'', ''Tap Transfer my Data.'', ''Tap Menu (...).'', ''Tap Export to SD card.'']' - Ginger Dank Nugs (Grape) - 350mg. Feast your eyes on these unique and striking gourmet chocolates; Coco Nugs created by Ginger Dank. Crafted to resemble perfect nugs of cannabis, each of the 10 buds contains 35mg of THC. ... This is a perfect product for both cannabis and chocolate lovers, who appreciate a little twist. - source_sentence: how to delete vdom in fortigate? sentences: - Go to System -> VDOM -> VDOM2 and select 'Delete'. This VDOM is now successfully removed from the configuration. - 'Both combination birth control pills and progestin-only pills may cause headaches as a side effect. Additional side effects of birth control pills may include: breast tenderness. nausea.' - White cheese tends to show imperfections more readily and as consumers got more used to yellow-orange cheese, it became an expected option. Today, many cheddars are yellow. While most cheesemakers use annatto, some use an artificial coloring agent instead, according to Sachs. - source_sentence: where are earthquakes most likely to occur on earth? sentences: - Zelle in the Bank of the America app is a fast, safe, and easy way to send and receive money with family and friends who have a bank account in the U.S., all with no fees. Money moves in minutes directly between accounts that are already enrolled with Zelle. - It takes about 3 days for a spacecraft to reach the Moon. During that time a spacecraft travels at least 240,000 miles (386,400 kilometers) which is the distance between Earth and the Moon. - Most earthquakes occur along the edge of the oceanic and continental plates. The earth's crust (the outer layer of the planet) is made up of several pieces, called plates. The plates under the oceans are called oceanic plates and the rest are continental plates. - source_sentence: fix iphone is disabled connect to itunes without itunes? sentences: - To fix a disabled iPhone or iPad without iTunes, you have to erase your device. Click on the "Erase iPhone" option and confirm your selection. Wait for a while as the "Find My iPhone" feature will remotely erase your iOS device. Needless to say, it will also disable its lock. - How Māui brought fire to the world. One evening, after eating a hearty meal, Māui lay beside his fire staring into the flames. ... In the middle of the night, while everyone was sleeping, Māui went from village to village and extinguished all the fires until not a single fire burned in the world. - Angry Orchard makes a variety of year-round craft cider styles, including Angry Orchard Crisp Apple, a fruit-forward hard cider that balances the sweetness of culinary apples with dryness and bright acidity of bittersweet apples for a complex, refreshing taste. - source_sentence: how to reverse a video on tiktok that's not yours? sentences: - '[''Tap "Effects" at the bottom of your screen — it\''s an icon that looks like a clock. Open the Effects menu. ... '', ''At the end of the new list that appears, tap "Time." Select "Time" at the end. ... '', ''Select "Reverse" — you\''ll then see a preview of your new, reversed video appear on the screen.'']' - Franchise Facts Poke Bar has a franchise fee of up to $30,000, with a total initial investment range of $157,800 to $438,000. The initial cost of a franchise includes several fees -- Unlock this franchise to better understand the costs such as training and territory fees. - Relative age is the age of a rock layer (or the fossils it contains) compared to other layers. It can be determined by looking at the position of rock layers. Absolute age is the numeric age of a layer of rocks or fossils. Absolute age can be determined by using radiometric dating. datasets: - sentence-transformers/gooaq pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 co2_eq_emissions: emissions: 6.483463467240631 energy_consumed: 0.01667977902671103 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.112 hardware_used: 1 x NVIDIA GeForce RTX 3090 model-index: - name: Static Embeddings with BERT uncased tokenizer finetuned on GooAQ pairs results: - task: type: information-retrieval name: Information Retrieval dataset: name: NanoClimateFEVER type: NanoClimateFEVER metrics: - type: cosine_accuracy@1 value: 0.2 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.42 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.58 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.76 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.2 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.16666666666666663 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.148 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.10399999999999998 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.10566666666666666 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.22233333333333336 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.30566666666666664 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.40399999999999997 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.3021857757296797 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.35745238095238085 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.23166090256020686 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoDBPedia type: NanoDBPedia metrics: - type: cosine_accuracy@1 value: 0.52 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.82 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.52 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.5133333333333333 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.48 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.43800000000000006 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.04048260039152364 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.10679067052991392 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.16517406885695451 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.29331552217012935 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5008496215473859 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6488571428571429 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.3752676117852694 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoFEVER type: NanoFEVER metrics: - type: cosine_accuracy@1 value: 0.42 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.68 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.68 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.82 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.42 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2333333333333333 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.14 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08599999999999998 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.3966666666666667 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.6466666666666667 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6466666666666667 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7766666666666667 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5890710274148659 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.546047619047619 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.5325906780111076 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoFiQA2018 type: NanoFiQA2018 metrics: - type: cosine_accuracy@1 value: 0.36 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.48 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.54 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.64 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.36 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.22 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.106 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.1734126984126984 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.32126984126984126 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.3737936507936508 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.47868253968253976 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.384612736899094 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.44405555555555554 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.32183898737919203 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoHotpotQA type: NanoHotpotQA metrics: - type: cosine_accuracy@1 value: 0.58 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.74 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.78 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.86 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.58 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.3133333333333333 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.21600000000000003 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.126 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.29 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.47 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.54 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.63 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5630232180814766 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.675079365079365 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.48992202928149226 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoMSMARCO type: NanoMSMARCO metrics: - type: cosine_accuracy@1 value: 0.2 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.52 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.2 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.16666666666666663 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.10400000000000002 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06000000000000001 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.2 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.52 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.41343867686046815 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.3524603174603175 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.3712333972436779 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoNFCorpus type: NanoNFCorpus metrics: - type: cosine_accuracy@1 value: 0.38 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.54 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.68 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.68 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.38 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.36 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.3440000000000001 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.264 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.019665573227317924 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.07420738619382097 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.09536630802985016 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.11619353053313819 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.3204704228749859 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.48633333333333334 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.12237170785886863 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoNQ type: NanoNQ metrics: - type: cosine_accuracy@1 value: 0.2 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.36 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.48 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.64 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.2 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.12 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.09600000000000002 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.068 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.19 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.34 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.45 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.62 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.3932776776815765 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.33038888888888884 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.33440957968177043 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoQuoraRetrieval type: NanoQuoraRetrieval metrics: - type: cosine_accuracy@1 value: 0.9 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.98 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.98 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 1.0 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.9 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.38666666666666655 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.23599999999999993 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.13399999999999998 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.8106666666666666 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.922 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.9259999999999999 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.99 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.9424143419536263 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.9395238095238095 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.9189180735930736 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoSCIDOCS type: NanoSCIDOCS metrics: - type: cosine_accuracy@1 value: 0.28 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.44 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.56 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.76 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.28 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.21333333333333332 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16799999999999998 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.13 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.059666666666666666 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.13166666666666668 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.17266666666666666 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.26666666666666666 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.24548416934230666 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.3969603174603174 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.1751060490177909 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoArguAna type: NanoArguAna metrics: - type: cosine_accuracy@1 value: 0.12 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.4 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.48 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.64 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.12 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.13333333333333333 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.09600000000000002 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06400000000000002 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.12 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.4 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.48 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.64 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.3703136948358056 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.2856587301587301 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2982488157827007 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoSciFact type: NanoSciFact metrics: - type: cosine_accuracy@1 value: 0.46 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.46 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1733333333333333 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.128 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.076 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.425 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.47 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.58 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.685 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5455895863246394 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5181349206349206 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.5100938735556383 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoTouche2020 type: NanoTouche2020 metrics: - type: cosine_accuracy@1 value: 0.6326530612244898 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.9591836734693877 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 1.0 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 1.0 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.6326530612244898 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.6326530612244897 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.5877551020408164 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.5163265306122449 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.04221140303473122 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.12126049151597706 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.18889590300402684 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.3304256352667907 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.563482462405376 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7857142857142857 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.42991471736271825 name: Cosine Map@100 - task: type: nano-beir name: Nano BEIR dataset: name: NanoBEIR mean type: NanoBEIR_mean metrics: - type: cosine_accuracy@1 value: 0.4040502354788069 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5922448979591837 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6692307692307693 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7692307692307693 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.4040502354788069 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2794348508634223 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.2233657770800628 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.1671020408163265 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.22103376474868755 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.3635534658597092 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.41878691774496013 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5254577354604563 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.47186257015009897 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5205128205128206 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.39319818639334664 name: Cosine Map@100 --- # Static Embeddings with BERT uncased tokenizer finetuned on GooAQ pairs This is a [sentence-transformers](https://www.SBERT.net) model trained on the [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Maximum Sequence Length:** inf tokens - **Output Dimensionality:** 1024 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): StaticEmbedding( (embedding): EmbeddingBag(30522, 1024, mode='mean') ) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("tomaarsen/static-bert-uncased-gooaq-beir-4") # Run inference sentences = [ "how to reverse a video on tiktok that's not yours?", '[\'Tap "Effects" at the bottom of your screen — it\\\'s an icon that looks like a clock. Open the Effects menu. ... \', \'At the end of the new list that appears, tap "Time." Select "Time" at the end. ... \', \'Select "Reverse" — you\\\'ll then see a preview of your new, reversed video appear on the screen.\']', 'Relative age is the age of a rock layer (or the fossils it contains) compared to other layers. It can be determined by looking at the position of rock layers. Absolute age is the numeric age of a layer of rocks or fossils. Absolute age can be determined by using radiometric dating.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 | |:--------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------| | cosine_accuracy@1 | 0.2 | 0.52 | 0.42 | 0.36 | 0.58 | 0.2 | 0.38 | 0.2 | 0.9 | 0.28 | 0.12 | 0.46 | 0.6327 | | cosine_accuracy@3 | 0.42 | 0.7 | 0.68 | 0.48 | 0.74 | 0.5 | 0.54 | 0.36 | 0.98 | 0.44 | 0.4 | 0.5 | 0.9592 | | cosine_accuracy@5 | 0.58 | 0.82 | 0.68 | 0.54 | 0.78 | 0.52 | 0.68 | 0.48 | 0.98 | 0.56 | 0.48 | 0.6 | 1.0 | | cosine_accuracy@10 | 0.76 | 0.9 | 0.82 | 0.64 | 0.86 | 0.6 | 0.68 | 0.64 | 1.0 | 0.76 | 0.64 | 0.7 | 1.0 | | cosine_precision@1 | 0.2 | 0.52 | 0.42 | 0.36 | 0.58 | 0.2 | 0.38 | 0.2 | 0.9 | 0.28 | 0.12 | 0.46 | 0.6327 | | cosine_precision@3 | 0.1667 | 0.5133 | 0.2333 | 0.22 | 0.3133 | 0.1667 | 0.36 | 0.12 | 0.3867 | 0.2133 | 0.1333 | 0.1733 | 0.6327 | | cosine_precision@5 | 0.148 | 0.48 | 0.14 | 0.16 | 0.216 | 0.104 | 0.344 | 0.096 | 0.236 | 0.168 | 0.096 | 0.128 | 0.5878 | | cosine_precision@10 | 0.104 | 0.438 | 0.086 | 0.106 | 0.126 | 0.06 | 0.264 | 0.068 | 0.134 | 0.13 | 0.064 | 0.076 | 0.5163 | | cosine_recall@1 | 0.1057 | 0.0405 | 0.3967 | 0.1734 | 0.29 | 0.2 | 0.0197 | 0.19 | 0.8107 | 0.0597 | 0.12 | 0.425 | 0.0422 | | cosine_recall@3 | 0.2223 | 0.1068 | 0.6467 | 0.3213 | 0.47 | 0.5 | 0.0742 | 0.34 | 0.922 | 0.1317 | 0.4 | 0.47 | 0.1213 | | cosine_recall@5 | 0.3057 | 0.1652 | 0.6467 | 0.3738 | 0.54 | 0.52 | 0.0954 | 0.45 | 0.926 | 0.1727 | 0.48 | 0.58 | 0.1889 | | cosine_recall@10 | 0.404 | 0.2933 | 0.7767 | 0.4787 | 0.63 | 0.6 | 0.1162 | 0.62 | 0.99 | 0.2667 | 0.64 | 0.685 | 0.3304 | | **cosine_ndcg@10** | **0.3022** | **0.5008** | **0.5891** | **0.3846** | **0.563** | **0.4134** | **0.3205** | **0.3933** | **0.9424** | **0.2455** | **0.3703** | **0.5456** | **0.5635** | | cosine_mrr@10 | 0.3575 | 0.6489 | 0.546 | 0.4441 | 0.6751 | 0.3525 | 0.4863 | 0.3304 | 0.9395 | 0.397 | 0.2857 | 0.5181 | 0.7857 | | cosine_map@100 | 0.2317 | 0.3753 | 0.5326 | 0.3218 | 0.4899 | 0.3712 | 0.1224 | 0.3344 | 0.9189 | 0.1751 | 0.2982 | 0.5101 | 0.4299 | #### Nano BEIR * Dataset: `NanoBEIR_mean` * Evaluated with [NanoBEIREvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.4041 | | cosine_accuracy@3 | 0.5922 | | cosine_accuracy@5 | 0.6692 | | cosine_accuracy@10 | 0.7692 | | cosine_precision@1 | 0.4041 | | cosine_precision@3 | 0.2794 | | cosine_precision@5 | 0.2234 | | cosine_precision@10 | 0.1671 | | cosine_recall@1 | 0.221 | | cosine_recall@3 | 0.3636 | | cosine_recall@5 | 0.4188 | | cosine_recall@10 | 0.5255 | | **cosine_ndcg@10** | **0.4719** | | cosine_mrr@10 | 0.5205 | | cosine_map@100 | 0.3932 | ## Training Details ### Training Dataset #### gooaq * Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c) * Size: 3,012,496 training samples * Columns: question and answer * Approximate statistics based on the first 1000 samples: | | question | answer | |:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | question | answer | |:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | what is the difference between broilers and layers? | An egg laying poultry is called egger or layer whereas broilers are reared for obtaining meat. So a layer should be able to produce more number of large sized eggs, without growing too much. On the other hand, a broiler should yield more meat and hence should be able to grow well. | | what is the difference between chronological order and spatial order? | As a writer, you should always remember that unlike chronological order and the other organizational methods for data, spatial order does not take into account the time. Spatial order is primarily focused on the location. All it does is take into account the location of objects and not the time. | | is kamagra same as viagra? | Kamagra is thought to contain the same active ingredient as Viagra, sildenafil citrate. In theory, it should work in much the same way as Viagra, taking about 45 minutes to take effect, and lasting for around 4-6 hours. However, this will vary from person to person. | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 512, 256, 128, 64, 32 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Evaluation Dataset #### gooaq * Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c) * Size: 3,012,496 evaluation samples * Columns: question and answer * Approximate statistics based on the first 1000 samples: | | question | answer | |:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | question | answer | |:-----------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | how do i program my directv remote with my tv? | ['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.'] | | are rodrigues fruit bats nocturnal? | Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night. | | why does your heart rate increase during exercise bbc bitesize? | During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it. | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 512, 256, 128, 64, 32 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 2048 - `per_device_eval_batch_size`: 2048 - `learning_rate`: 0.2 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `bf16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 2048 - `per_device_eval_batch_size`: 2048 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 0.2 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | Validation Loss | NanoClimateFEVER_cosine_ndcg@10 | NanoDBPedia_cosine_ndcg@10 | NanoFEVER_cosine_ndcg@10 | NanoFiQA2018_cosine_ndcg@10 | NanoHotpotQA_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoNFCorpus_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoQuoraRetrieval_cosine_ndcg@10 | NanoSCIDOCS_cosine_ndcg@10 | NanoArguAna_cosine_ndcg@10 | NanoSciFact_cosine_ndcg@10 | NanoTouche2020_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 | |:------:|:----:|:-------------:|:---------------:|:-------------------------------:|:--------------------------:|:------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:---------------------:|:---------------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:-----------------------------:|:----------------------------:| | 0 | 0 | - | - | 0.0726 | 0.3715 | 0.2100 | 0.1058 | 0.3196 | 0.3109 | 0.2221 | 0.1401 | 0.6737 | 0.1618 | 0.1183 | 0.4337 | 0.1331 | 0.2518 | | 0.0007 | 1 | 35.3437 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.0682 | 100 | 16.3878 | 2.4139 | 0.2927 | 0.4729 | 0.5725 | 0.3235 | 0.5905 | 0.3674 | 0.2994 | 0.3324 | 0.9123 | 0.2326 | 0.3407 | 0.5618 | 0.5352 | 0.4488 | | 0.1363 | 200 | 5.94 | 1.8298 | 0.2897 | 0.4880 | 0.5624 | 0.3447 | 0.5683 | 0.4311 | 0.3066 | 0.3502 | 0.9129 | 0.2533 | 0.3335 | 0.5696 | 0.5365 | 0.4575 | | 0.2045 | 300 | 4.8307 | 1.5955 | 0.2780 | 0.4896 | 0.5746 | 0.3513 | 0.5815 | 0.4040 | 0.3125 | 0.3897 | 0.9190 | 0.2578 | 0.3556 | 0.5461 | 0.5401 | 0.4615 | | 0.2727 | 400 | 4.33 | 1.4696 | 0.3113 | 0.4909 | 0.5920 | 0.3795 | 0.5836 | 0.3919 | 0.3201 | 0.4023 | 0.9355 | 0.2535 | 0.3419 | 0.5236 | 0.5524 | 0.4676 | | 0.3408 | 500 | 4.0423 | 1.3887 | 0.3085 | 0.4966 | 0.5986 | 0.3794 | 0.5914 | 0.3914 | 0.3174 | 0.3590 | 0.9309 | 0.2441 | 0.3537 | 0.5311 | 0.5534 | 0.4658 | | 0.4090 | 600 | 3.8422 | 1.3120 | 0.3034 | 0.5052 | 0.6075 | 0.3680 | 0.5834 | 0.4136 | 0.3122 | 0.3725 | 0.9257 | 0.2477 | 0.3583 | 0.5309 | 0.5646 | 0.4687 | | 0.4772 | 700 | 3.6795 | 1.2693 | 0.2975 | 0.4988 | 0.5954 | 0.3785 | 0.5811 | 0.4160 | 0.3142 | 0.3908 | 0.9362 | 0.2471 | 0.3479 | 0.5520 | 0.5601 | 0.4704 | | 0.5453 | 800 | 3.5367 | 1.2285 | 0.3011 | 0.4947 | 0.5829 | 0.3463 | 0.5689 | 0.4369 | 0.3224 | 0.3791 | 0.9310 | 0.2430 | 0.3663 | 0.5577 | 0.5585 | 0.4684 | | 0.6135 | 900 | 3.4279 | 1.1963 | 0.3059 | 0.5027 | 0.5894 | 0.3674 | 0.5758 | 0.4126 | 0.3186 | 0.4066 | 0.9349 | 0.2456 | 0.3672 | 0.5560 | 0.5624 | 0.4727 | | 0.6817 | 1000 | 3.3637 | 1.1652 | 0.3056 | 0.5022 | 0.5849 | 0.3702 | 0.5714 | 0.4238 | 0.3161 | 0.4007 | 0.9373 | 0.2430 | 0.3699 | 0.5618 | 0.5657 | 0.4733 | | 0.7498 | 1100 | 3.2336 | 1.1312 | 0.3006 | 0.5038 | 0.5920 | 0.3884 | 0.5733 | 0.4241 | 0.3247 | 0.3974 | 0.9369 | 0.2431 | 0.3670 | 0.5644 | 0.5608 | 0.4751 | | 0.8180 | 1200 | 3.1952 | 1.1132 | 0.3044 | 0.4987 | 0.5770 | 0.3630 | 0.5735 | 0.4259 | 0.3279 | 0.3955 | 0.9428 | 0.2416 | 0.3798 | 0.5659 | 0.5641 | 0.4739 | | 0.8862 | 1300 | 3.1535 | 1.0926 | 0.2983 | 0.4968 | 0.5753 | 0.3812 | 0.5684 | 0.4108 | 0.3203 | 0.3965 | 0.9421 | 0.2428 | 0.3685 | 0.5608 | 0.5628 | 0.4711 | | 0.9543 | 1400 | 3.0691 | 1.0862 | 0.3109 | 0.5008 | 0.5870 | 0.3761 | 0.5612 | 0.4121 | 0.3204 | 0.3947 | 0.9426 | 0.2414 | 0.3708 | 0.5456 | 0.5588 | 0.4709 | | 1.0 | 1467 | - | - | 0.3022 | 0.5008 | 0.5891 | 0.3846 | 0.5630 | 0.4134 | 0.3205 | 0.3933 | 0.9424 | 0.2455 | 0.3703 | 0.5456 | 0.5635 | 0.4719 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.017 kWh - **Carbon Emitted**: 0.006 kg of CO2 - **Hours Used**: 0.112 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 3.3.0.dev0 - Transformers: 4.45.2 - PyTorch: 2.5.0.dev20240807+cu121 - Accelerate: 1.0.0 - Datasets: 2.20.0 - Tokenizers: 0.20.1-dev.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```