tomaarsen HF staff commited on
Commit
7a69b0e
·
verified ·
1 Parent(s): 748dc7a

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,547 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: sentence-transformers
6
+ tags:
7
+ - sentence-transformers
8
+ - sentence-similarity
9
+ - feature-extraction
10
+ - 100K<n<1M
11
+ - loss:MultipleNegativesRankingLoss
12
+ base_model: microsoft/mpnet-base
13
+ metrics:
14
+ - cosine_accuracy
15
+ - dot_accuracy
16
+ - manhattan_accuracy
17
+ - euclidean_accuracy
18
+ - max_accuracy
19
+ widget:
20
+ - source_sentence: The truth?
21
+ sentences:
22
+ - Is that true?
23
+ - Two kids are outdoors.
24
+ - The dog is sleeping.
25
+ - source_sentence: It did not.
26
+ sentences:
27
+ - It is not, of course.
28
+ - The boy is in the sand.
29
+ - Men are napping.
30
+ - source_sentence: Impossible.
31
+ sentences:
32
+ - Entirely possible.
33
+ - The people are athletes
34
+ - The young man is sleeping.
35
+ - source_sentence: Just a bike
36
+ sentences:
37
+ - A person on a bike
38
+ - yeah i can believe that
39
+ - The man is wearing jeans.
40
+ - source_sentence: Then he ran.
41
+ sentences:
42
+ - The people are running.
43
+ - The man is on his bike.
44
+ - The boy is sleeping.
45
+ pipeline_tag: sentence-similarity
46
+ co2_eq_emissions:
47
+ emissions: 118.81134392463773
48
+ energy_consumed: 0.30566177669432554
49
+ source: codecarbon
50
+ training_type: fine-tuning
51
+ on_cloud: false
52
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
53
+ ram_total_size: 31.777088165283203
54
+ hours_used: 1.661
55
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
56
+ model-index:
57
+ - name: MPNet base trained on AllNLI triplets
58
+ results:
59
+ - task:
60
+ type: triplet
61
+ name: Triplet
62
+ dataset:
63
+ name: all nli dev
64
+ type: all-nli-dev
65
+ metrics:
66
+ - type: cosine_accuracy
67
+ value: 0.9003645200486027
68
+ name: Cosine Accuracy
69
+ - type: dot_accuracy
70
+ value: 0.09705346294046173
71
+ name: Dot Accuracy
72
+ - type: manhattan_accuracy
73
+ value: 0.8968712029161604
74
+ name: Manhattan Accuracy
75
+ - type: euclidean_accuracy
76
+ value: 0.8974787363304981
77
+ name: Euclidean Accuracy
78
+ - type: max_accuracy
79
+ value: 0.9003645200486027
80
+ name: Max Accuracy
81
+ - task:
82
+ type: triplet
83
+ name: Triplet
84
+ dataset:
85
+ name: all nli test
86
+ type: all-nli-test
87
+ metrics:
88
+ - type: cosine_accuracy
89
+ value: 0.9149644424269935
90
+ name: Cosine Accuracy
91
+ - type: dot_accuracy
92
+ value: 0.08564079285822364
93
+ name: Dot Accuracy
94
+ - type: manhattan_accuracy
95
+ value: 0.911484339536995
96
+ name: Manhattan Accuracy
97
+ - type: euclidean_accuracy
98
+ value: 0.9134513542139506
99
+ name: Euclidean Accuracy
100
+ - type: max_accuracy
101
+ value: 0.9149644424269935
102
+ name: Max Accuracy
103
+ ---
104
+
105
+ # MPNet base trained on AllNLI triplets
106
+
107
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
108
+
109
+ ## Model Details
110
+
111
+ ### Model Description
112
+ - **Model Type:** Sentence Transformer
113
+ - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
114
+ - **Maximum Sequence Length:** 512 tokens
115
+ - **Output Dimensionality:** 768 tokens
116
+ - **Similarity Function:** Cosine Similarity
117
+ - **Training Dataset:**
118
+ - [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
119
+ - **Language:** en
120
+ - **License:** apache-2.0
121
+
122
+ ### Model Sources
123
+
124
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
125
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
126
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
127
+
128
+ ### Full Model Architecture
129
+
130
+ ```
131
+ SentenceTransformer(
132
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
133
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
134
+ )
135
+ ```
136
+
137
+ ## Usage
138
+
139
+ ### Direct Usage (Sentence Transformers)
140
+
141
+ First install the Sentence Transformers library:
142
+
143
+ ```bash
144
+ pip install -U sentence-transformers
145
+ ```
146
+
147
+ Then you can load this model and run inference.
148
+ ```python
149
+ from sentence_transformers import SentenceTransformer
150
+
151
+ # Download from the 🤗 Hub
152
+ model = SentenceTransformer("tomaarsen/mpnet-base-all-nli-triplet")
153
+ # Run inference
154
+ sentences = [
155
+ 'Then he ran.',
156
+ 'The people are running.',
157
+ 'The man is on his bike.',
158
+ ]
159
+ embeddings = model.encode(sentences)
160
+ print(embeddings.shape)
161
+ # [3, 768]
162
+
163
+ # Get the similarity scores for the embeddings
164
+ similarities = model.similarity(embeddings, embeddings)
165
+ print(similarities.shape)
166
+ # [3, 3]
167
+ ```
168
+
169
+ <!--
170
+ ### Direct Usage (Transformers)
171
+
172
+ <details><summary>Click to see the direct usage in Transformers</summary>
173
+
174
+ </details>
175
+ -->
176
+
177
+ <!--
178
+ ### Downstream Usage (Sentence Transformers)
179
+
180
+ You can finetune this model on your own dataset.
181
+
182
+ <details><summary>Click to expand</summary>
183
+
184
+ </details>
185
+ -->
186
+
187
+ <!--
188
+ ### Out-of-Scope Use
189
+
190
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
191
+ -->
192
+
193
+ ## Evaluation
194
+
195
+ ### Metrics
196
+
197
+ #### Triplet
198
+ * Dataset: `all-nli-dev`
199
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
200
+
201
+ | Metric | Value |
202
+ |:-------------------|:-----------|
203
+ | cosine_accuracy | 0.9004 |
204
+ | dot_accuracy | 0.0971 |
205
+ | manhattan_accuracy | 0.8969 |
206
+ | euclidean_accuracy | 0.8975 |
207
+ | **max_accuracy** | **0.9004** |
208
+
209
+ #### Triplet
210
+ * Dataset: `all-nli-test`
211
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
212
+
213
+ | Metric | Value |
214
+ |:-------------------|:----------|
215
+ | cosine_accuracy | 0.915 |
216
+ | dot_accuracy | 0.0856 |
217
+ | manhattan_accuracy | 0.9115 |
218
+ | euclidean_accuracy | 0.9135 |
219
+ | **max_accuracy** | **0.915** |
220
+
221
+ <!--
222
+ ## Bias, Risks and Limitations
223
+
224
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
225
+ -->
226
+
227
+ <!--
228
+ ### Recommendations
229
+
230
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
231
+ -->
232
+
233
+ ## Training Details
234
+
235
+ ### Training Dataset
236
+
237
+ #### sentence-transformers/all-nli
238
+
239
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
240
+ * Size: 100,000 training samples
241
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
242
+ * Approximate statistics based on the first 1000 samples:
243
+ | | anchor | positive | negative |
244
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
245
+ | type | string | string | string |
246
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.81 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
247
+ * Samples:
248
+ | anchor | positive | negative |
249
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
250
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
251
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
252
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
253
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
254
+ ```json
255
+ {
256
+ "scale": 20.0,
257
+ "similarity_fct": "cos_sim"
258
+ }
259
+ ```
260
+
261
+ ### Evaluation Dataset
262
+
263
+ #### sentence-transformers/all-nli
264
+
265
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
266
+ * Size: 6,584 evaluation samples
267
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
268
+ * Approximate statistics based on the first 1000 samples:
269
+ | | anchor | positive | negative |
270
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
271
+ | type | string | string | string |
272
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.95 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.78 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.35 tokens</li><li>max: 29 tokens</li></ul> |
273
+ * Samples:
274
+ | anchor | positive | negative |
275
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
276
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
277
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
278
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
279
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
280
+ ```json
281
+ {
282
+ "scale": 20.0,
283
+ "similarity_fct": "cos_sim"
284
+ }
285
+ ```
286
+
287
+ ### Training Hyperparameters
288
+ #### Non-Default Hyperparameters
289
+
290
+ - `eval_strategy`: steps
291
+ - `per_device_train_batch_size`: 16
292
+ - `per_device_eval_batch_size`: 16
293
+ - `num_train_epochs`: 1
294
+ - `warmup_ratio`: 0.1
295
+ - `fp16`: True
296
+ - `batch_sampler`: no_duplicates
297
+
298
+ #### All Hyperparameters
299
+ <details><summary>Click to expand</summary>
300
+
301
+ - `overwrite_output_dir`: False
302
+ - `do_predict`: False
303
+ - `eval_strategy`: steps
304
+ - `prediction_loss_only`: True
305
+ - `per_device_train_batch_size`: 16
306
+ - `per_device_eval_batch_size`: 16
307
+ - `per_gpu_train_batch_size`: None
308
+ - `per_gpu_eval_batch_size`: None
309
+ - `gradient_accumulation_steps`: 1
310
+ - `eval_accumulation_steps`: None
311
+ - `learning_rate`: 5e-05
312
+ - `weight_decay`: 0.0
313
+ - `adam_beta1`: 0.9
314
+ - `adam_beta2`: 0.999
315
+ - `adam_epsilon`: 1e-08
316
+ - `max_grad_norm`: 1.0
317
+ - `num_train_epochs`: 1
318
+ - `max_steps`: -1
319
+ - `lr_scheduler_type`: linear
320
+ - `lr_scheduler_kwargs`: {}
321
+ - `warmup_ratio`: 0.1
322
+ - `warmup_steps`: 0
323
+ - `log_level`: passive
324
+ - `log_level_replica`: warning
325
+ - `log_on_each_node`: True
326
+ - `logging_nan_inf_filter`: True
327
+ - `save_safetensors`: True
328
+ - `save_on_each_node`: False
329
+ - `save_only_model`: False
330
+ - `restore_callback_states_from_checkpoint`: False
331
+ - `no_cuda`: False
332
+ - `use_cpu`: False
333
+ - `use_mps_device`: False
334
+ - `seed`: 42
335
+ - `data_seed`: None
336
+ - `jit_mode_eval`: False
337
+ - `use_ipex`: False
338
+ - `bf16`: False
339
+ - `fp16`: True
340
+ - `fp16_opt_level`: O1
341
+ - `half_precision_backend`: auto
342
+ - `bf16_full_eval`: False
343
+ - `fp16_full_eval`: False
344
+ - `tf32`: None
345
+ - `local_rank`: 0
346
+ - `ddp_backend`: None
347
+ - `tpu_num_cores`: None
348
+ - `tpu_metrics_debug`: False
349
+ - `debug`: []
350
+ - `dataloader_drop_last`: False
351
+ - `dataloader_num_workers`: 0
352
+ - `dataloader_prefetch_factor`: None
353
+ - `past_index`: -1
354
+ - `disable_tqdm`: False
355
+ - `remove_unused_columns`: True
356
+ - `label_names`: None
357
+ - `load_best_model_at_end`: False
358
+ - `ignore_data_skip`: False
359
+ - `fsdp`: []
360
+ - `fsdp_min_num_params`: 0
361
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
362
+ - `fsdp_transformer_layer_cls_to_wrap`: None
363
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
364
+ - `deepspeed`: None
365
+ - `label_smoothing_factor`: 0.0
366
+ - `optim`: adamw_torch
367
+ - `optim_args`: None
368
+ - `adafactor`: False
369
+ - `group_by_length`: False
370
+ - `length_column_name`: length
371
+ - `ddp_find_unused_parameters`: None
372
+ - `ddp_bucket_cap_mb`: None
373
+ - `ddp_broadcast_buffers`: False
374
+ - `dataloader_pin_memory`: True
375
+ - `dataloader_persistent_workers`: False
376
+ - `skip_memory_metrics`: True
377
+ - `use_legacy_prediction_loop`: False
378
+ - `push_to_hub`: False
379
+ - `resume_from_checkpoint`: None
380
+ - `hub_model_id`: None
381
+ - `hub_strategy`: every_save
382
+ - `hub_private_repo`: False
383
+ - `hub_always_push`: False
384
+ - `gradient_checkpointing`: False
385
+ - `gradient_checkpointing_kwargs`: None
386
+ - `include_inputs_for_metrics`: False
387
+ - `eval_do_concat_batches`: True
388
+ - `fp16_backend`: auto
389
+ - `push_to_hub_model_id`: None
390
+ - `push_to_hub_organization`: None
391
+ - `mp_parameters`:
392
+ - `auto_find_batch_size`: False
393
+ - `full_determinism`: False
394
+ - `torchdynamo`: None
395
+ - `ray_scope`: last
396
+ - `ddp_timeout`: 1800
397
+ - `torch_compile`: False
398
+ - `torch_compile_backend`: None
399
+ - `torch_compile_mode`: None
400
+ - `dispatch_batches`: None
401
+ - `split_batches`: None
402
+ - `include_tokens_per_second`: False
403
+ - `include_num_input_tokens_seen`: False
404
+ - `neftune_noise_alpha`: None
405
+ - `optim_target_modules`: None
406
+ - `batch_eval_metrics`: False
407
+ - `batch_sampler`: no_duplicates
408
+ - `multi_dataset_batch_sampler`: proportional
409
+
410
+ </details>
411
+
412
+ ### Training Logs
413
+ | Epoch | Step | Training Loss | loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
414
+ |:-----:|:----:|:-------------:|:------:|:------------------------:|:-------------------------:|
415
+ | 0 | 0 | - | - | 0.6832 | - |
416
+ | 0.016 | 100 | 2.6355 | 1.0725 | 0.7924 | - |
417
+ | 0.032 | 200 | 0.9206 | 0.8342 | 0.8080 | - |
418
+ | 0.048 | 300 | 1.2567 | 0.7855 | 0.8133 | - |
419
+ | 0.064 | 400 | 0.7949 | 0.8857 | 0.7974 | - |
420
+ | 0.08 | 500 | 0.7583 | 0.9487 | 0.7872 | - |
421
+ | 0.096 | 600 | 1.0022 | 1.1312 | 0.7848 | - |
422
+ | 0.112 | 700 | 0.8178 | 1.2282 | 0.7895 | - |
423
+ | 0.128 | 800 | 0.9997 | 1.5132 | 0.7488 | - |
424
+ | 0.144 | 900 | 1.1173 | 1.4605 | 0.7473 | - |
425
+ | 0.16 | 1000 | 1.0089 | 1.3794 | 0.7543 | - |
426
+ | 0.176 | 1100 | 1.0235 | 1.4188 | 0.7640 | - |
427
+ | 0.192 | 1200 | 1.0031 | 1.2465 | 0.7570 | - |
428
+ | 0.208 | 1300 | 0.8286 | 1.4176 | 0.7426 | - |
429
+ | 0.224 | 1400 | 0.8411 | 1.1914 | 0.7600 | - |
430
+ | 0.24 | 1500 | 0.8389 | 1.1719 | 0.7820 | - |
431
+ | 0.256 | 1600 | 0.7144 | 1.1167 | 0.7691 | - |
432
+ | 0.272 | 1700 | 0.881 | 1.0747 | 0.7902 | - |
433
+ | 0.288 | 1800 | 0.8657 | 1.1576 | 0.7966 | - |
434
+ | 0.304 | 1900 | 0.7323 | 1.0122 | 0.8322 | - |
435
+ | 0.32 | 2000 | 0.6578 | 1.1248 | 0.8273 | - |
436
+ | 0.336 | 2100 | 0.6037 | 1.1194 | 0.8269 | - |
437
+ | 0.352 | 2200 | 0.641 | 1.1410 | 0.8341 | - |
438
+ | 0.368 | 2300 | 0.7843 | 1.0600 | 0.8328 | - |
439
+ | 0.384 | 2400 | 0.8222 | 0.9988 | 0.8161 | - |
440
+ | 0.4 | 2500 | 0.7287 | 1.2026 | 0.8395 | - |
441
+ | 0.416 | 2600 | 0.6035 | 0.8802 | 0.8273 | - |
442
+ | 0.432 | 2700 | 0.8275 | 1.1631 | 0.8458 | - |
443
+ | 0.448 | 2800 | 0.8483 | 0.9218 | 0.8316 | - |
444
+ | 0.464 | 2900 | 0.8813 | 1.1187 | 0.8147 | - |
445
+ | 0.48 | 3000 | 0.7408 | 0.9582 | 0.8246 | - |
446
+ | 0.496 | 3100 | 0.7886 | 0.9364 | 0.8261 | - |
447
+ | 0.512 | 3200 | 0.6064 | 0.8338 | 0.8302 | - |
448
+ | 0.528 | 3300 | 0.6415 | 0.7895 | 0.8650 | - |
449
+ | 0.544 | 3400 | 0.5766 | 0.7525 | 0.8571 | - |
450
+ | 0.56 | 3500 | 0.6212 | 0.8605 | 0.8572 | - |
451
+ | 0.576 | 3600 | 0.5773 | 0.7460 | 0.8419 | - |
452
+ | 0.592 | 3700 | 0.6104 | 0.7480 | 0.8580 | - |
453
+ | 0.608 | 3800 | 0.5754 | 0.7215 | 0.8657 | - |
454
+ | 0.624 | 3900 | 0.5525 | 0.7900 | 0.8630 | - |
455
+ | 0.64 | 4000 | 0.7802 | 0.7443 | 0.8612 | - |
456
+ | 0.656 | 4100 | 0.9796 | 0.7756 | 0.8748 | - |
457
+ | 0.672 | 4200 | 0.9355 | 0.6917 | 0.8796 | - |
458
+ | 0.688 | 4300 | 0.7081 | 0.6442 | 0.8832 | - |
459
+ | 0.704 | 4400 | 0.6868 | 0.6395 | 0.8891 | - |
460
+ | 0.72 | 4500 | 0.5964 | 0.5983 | 0.8820 | - |
461
+ | 0.736 | 4600 | 0.6618 | 0.5754 | 0.8861 | - |
462
+ | 0.752 | 4700 | 0.6957 | 0.6177 | 0.8803 | - |
463
+ | 0.768 | 4800 | 0.6375 | 0.5577 | 0.8881 | - |
464
+ | 0.784 | 4900 | 0.5481 | 0.5496 | 0.8835 | - |
465
+ | 0.8 | 5000 | 0.6626 | 0.5728 | 0.8949 | - |
466
+ | 0.816 | 5100 | 0.5192 | 0.5329 | 0.8935 | - |
467
+ | 0.832 | 5200 | 0.5856 | 0.5188 | 0.8935 | - |
468
+ | 0.848 | 5300 | 0.5142 | 0.5252 | 0.8920 | - |
469
+ | 0.864 | 5400 | 0.6404 | 0.5641 | 0.8885 | - |
470
+ | 0.88 | 5500 | 0.5466 | 0.5209 | 0.8929 | - |
471
+ | 0.896 | 5600 | 0.575 | 0.5170 | 0.8961 | - |
472
+ | 0.912 | 5700 | 0.626 | 0.5095 | 0.9001 | - |
473
+ | 0.928 | 5800 | 0.5631 | 0.4817 | 0.8984 | - |
474
+ | 0.944 | 5900 | 0.7301 | 0.4996 | 0.8984 | - |
475
+ | 0.96 | 6000 | 0.7712 | 0.5160 | 0.9014 | - |
476
+ | 0.976 | 6100 | 0.6203 | 0.5000 | 0.9007 | - |
477
+ | 0.992 | 6200 | 0.0005 | 0.4996 | 0.9004 | - |
478
+ | 1.0 | 6250 | - | - | - | 0.9150 |
479
+
480
+
481
+ ### Environmental Impact
482
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
483
+ - **Energy Consumed**: 0.306 kWh
484
+ - **Carbon Emitted**: 0.119 kg of CO2
485
+ - **Hours Used**: 1.661 hours
486
+
487
+ ### Training Hardware
488
+ - **On Cloud**: No
489
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
490
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
491
+ - **RAM Size**: 31.78 GB
492
+
493
+ ### Framework Versions
494
+ - Python: 3.11.6
495
+ - Sentence Transformers: 3.0.0.dev0
496
+ - Transformers: 4.41.1
497
+ - PyTorch: 2.3.0+cu121
498
+ - Accelerate: 0.30.1
499
+ - Datasets: 2.19.1
500
+ - Tokenizers: 0.19.1
501
+
502
+ ## Citation
503
+
504
+ ### BibTeX
505
+
506
+ #### Sentence Transformers
507
+ ```bibtex
508
+ @inproceedings{reimers-2019-sentence-bert,
509
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
510
+ author = "Reimers, Nils and Gurevych, Iryna",
511
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
512
+ month = "11",
513
+ year = "2019",
514
+ publisher = "Association for Computational Linguistics",
515
+ url = "https://arxiv.org/abs/1908.10084",
516
+ }
517
+ ```
518
+
519
+ #### MultipleNegativesRankingLoss
520
+ ```bibtex
521
+ @misc{henderson2017efficient,
522
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
523
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
524
+ year={2017},
525
+ eprint={1705.00652},
526
+ archivePrefix={arXiv},
527
+ primaryClass={cs.CL}
528
+ }
529
+ ```
530
+
531
+ <!--
532
+ ## Glossary
533
+
534
+ *Clearly define terms in order to be accessible across audiences.*
535
+ -->
536
+
537
+ <!--
538
+ ## Model Card Authors
539
+
540
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
541
+ -->
542
+
543
+ <!--
544
+ ## Model Card Contact
545
+
546
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
547
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/mpnet-base",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.1",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0.dev0",
4
+ "transformers": "4.41.1",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddfee06a6d52065a5f718b7cc241382902463a44fa36518668d81b6cba802802
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "model_max_length": 512,
59
+ "pad_token": "<pad>",
60
+ "sep_token": "</s>",
61
+ "strip_accents": null,
62
+ "tokenize_chinese_chars": true,
63
+ "tokenizer_class": "MPNetTokenizer",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff