File size: 24,006 Bytes
76e127f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
---

language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:TripletLoss
base_model: distilbert/distilbert-base-uncased
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
widget:
- source_sentence: All charts rank the top 100.
  sentences:
  - 'There are two primary charts: Gaon Album Chart and Gaon Digital Chart.'
  - 'Regional Preferente de Cataluña (3): 1999-00, 2002-03, 2008-09.'
  - Kyūsaku was born in Fukuoka city, Fukuoka prefecture as Sugiyama Naoki.
- source_sentence: Valley of the Giants (2004) .
  sentences:
  - '"That Girl" (by Hayley) (2001) - AUS: No. 53 [REF].'
  - Nuangola Outlet is situated just south of Penobscot Knob [REF].
  - Like Sir John Moore, the Craufurd family originated from Ayrshire.
- source_sentence: Flanagan is located at [REF].
  sentences:
  - Sharpes is located at (28.441281, -80.761019) [REF].
  - His father was Gallus Jacob Baumgartner, a prominent statesman.
  - He served terms on the city council in 1654, 1660 and 1666.
- source_sentence: Fox Sports 1 Purple Bel-Air .
  sentences:
  - Victory 93.7 The Victory 93.7 FM-WTKB ATWOOD-MILAN .
  - Greenwood & Batley also made a number of Coke oven locomotives.
  - Oltmans was born into a wealthy family with roots in the Dutch East Indies.
- source_sentence: 'Points awarded in the final: .'
  sentences:
  - Points awarded in the final:[REF] .
  - Bishop Ludden recently implemented an innovative House Program.
  - Douglas Wheelock was born in Binghamton, New York to Olin and Margaret Wheelock.
pipeline_tag: sentence-similarity
co2_eq_emissions:
  emissions: 3.4895934031398
  energy_consumed: 0.008977554535710646
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.045
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on distilbert/distilbert-base-uncased
  results:
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: wikipedia sections dev
      type: wikipedia-sections-dev
    metrics:
    - type: cosine_accuracy
      value: 0.733
      name: Cosine Accuracy
    - type: dot_accuracy
      value: 0.269
      name: Dot Accuracy
    - type: manhattan_accuracy
      value: 0.726
      name: Manhattan Accuracy
    - type: euclidean_accuracy
      value: 0.727
      name: Euclidean Accuracy
    - type: max_accuracy
      value: 0.733
      name: Max Accuracy
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: wikipedia sections test
      type: wikipedia-sections-test
    metrics:
    - type: cosine_accuracy
      value: 0.7
      name: Cosine Accuracy
    - type: dot_accuracy
      value: 0.306
      name: Dot Accuracy
    - type: manhattan_accuracy
      value: 0.706
      name: Manhattan Accuracy
    - type: euclidean_accuracy
      value: 0.708
      name: Euclidean Accuracy
    - type: max_accuracy
      value: 0.708
      name: Max Accuracy
---


# SentenceTransformer based on distilbert/distilbert-base-uncased

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [sentence-transformers/wikipedia-sections](https://huggingface.co/datasets/sentence-transformers/wikipedia-sections) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 6cdc0aad91f5ae2e6712e91bc7b65d1cf5c05411 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [sentence-transformers/wikipedia-sections](https://huggingface.co/datasets/sentence-transformers/wikipedia-sections)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("tomaarsen/distilbert-base-uncased-wikipedia-sections-triplet")

# Run inference

sentences = [

    'Points awarded in the final: .',

    'Points awarded in the final:[REF] .',

    'Bishop Ludden recently implemented an innovative House Program.',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Triplet
* Dataset: `wikipedia-sections-dev`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric             | Value     |
|:-------------------|:----------|
| cosine_accuracy    | 0.733     |

| dot_accuracy       | 0.269     |
| manhattan_accuracy | 0.726     |

| euclidean_accuracy | 0.727     |
| **max_accuracy**   | **0.733** |



#### Triplet

* Dataset: `wikipedia-sections-test`

* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)



| Metric             | Value     |

|:-------------------|:----------|

| cosine_accuracy    | 0.7       |

| dot_accuracy       | 0.306     |

| manhattan_accuracy | 0.706     |

| euclidean_accuracy | 0.708     |

| **max_accuracy**   | **0.708** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### sentence-transformers/wikipedia-sections

* Dataset: [sentence-transformers/wikipedia-sections](https://huggingface.co/datasets/sentence-transformers/wikipedia-sections) at [576bb61](https://huggingface.co/datasets/sentence-transformers/wikipedia-sections/tree/576bb61f0fc9ebc728b742f91bd5c81cb7d92c71)
* Size: 10,000 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                          | negative                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                             |
  | details | <ul><li>min: 7 tokens</li><li>mean: 31.65 tokens</li><li>max: 72 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 31.54 tokens</li><li>max: 91 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 31.52 tokens</li><li>max: 150 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                                                                                          | positive                                                                                                                                                        | negative                                                                                                                                                                                                                                        |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Bailey was educated at Ipswich School (1972-79) and at the College of St Hild and St Bede University of Durham (1979-82), where he obtained a first-class degree in Economic history.</code>                                              | <code>He won the Cricket Society's Wetherell Award in 1979 for the best public school all-rounder and played for the NCA Young Cricketers in 1980 [REF].</code> | <code>Bailey was a Fellow of Gonville and Caius College, Cambridge, between 1986 and 1996, lecturing in history and working as Admissions' Tutor.</code>                                                                                        |
  | <code>The record design and production was done by Ivan Stančić Piko and the cover was chosen to be "The Red Nude" act by Amedeo Modigliani.</code>                                                                                             | <code>VIS Idoli was also released as a double cassette EP with Film's Live in Kulušić EP entitled Zajedno.</code>                                               | <code>Promotional video was recorded for "Devojko mala" as the TV stations already broadcast the video for "Malena" and "Zašto su danas devojke ljute", which had its TV premiere on the 1981 New Year's Eve as part of Rokenroler show.</code> |
  | <code>Promotional video was recorded for "Devojko mala" as the TV stations already broadcast the video for "Malena" and "Zašto su danas devojke ljute", which had its TV premiere on the 1981 New Year's Eve as part of Rokenroler show.</code> | <code>"Dok dobuje kiša (u ritmu tam-tama)" and "Malena" appeared on Vlada Divljan's 1996 live album Odbrana i zaštita.</code>                                   | <code>The record design and production was done by Ivan Stančić Piko and the cover was chosen to be "The Red Nude" act by Amedeo Modigliani.</code>                                                                                             |
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/losses.html#tripletloss) with these parameters:
  ```json

  {

      "distance_metric": "TripletDistanceMetric.EUCLIDEAN",

      "triplet_margin": 5

  }

  ```

### Evaluation Dataset

#### sentence-transformers/wikipedia-sections

* Dataset: [sentence-transformers/wikipedia-sections](https://huggingface.co/datasets/sentence-transformers/wikipedia-sections) at [576bb61](https://huggingface.co/datasets/sentence-transformers/wikipedia-sections/tree/576bb61f0fc9ebc728b742f91bd5c81cb7d92c71)
* Size: 1,000 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                          | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                            |
  | details | <ul><li>min: 9 tokens</li><li>mean: 29.99 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 31.02 tokens</li><li>max: 88 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 30.75 tokens</li><li>max: 80 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                             | positive                                                                                                                                       | negative                                                                                                                                                                                                                           |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Modern airforces have become dependent on airborne radars typically carried by converted airliners and transport aircraft such as the E-3 Sentry and A-50 'Mainstay'.</code> | <code>In late 2003, the missile was offered again on the export market as the 172S-1 [REF].</code>                                             | <code>The mockup shown in 1993 had a strong resemblance to the Buk airframe, but since the Indians became involved there have been some changes.</code>                                                                            |
  | <code>In May 2005 it was reported that there were two versions, with and without a rocket booster, with ranges of 400 km and 300 km respectively [REF].</code>                     | <code>Guidance is by inertial navigation until the missile is close enough to the target to use active radar for terminal homing [REF].</code> | <code>The missile resurfaced as the KS-172 in 1999,[REF] as part of a new export-led strategy[REF] whereby foreign investment in a -range export model[REF] would ultimately fund a version for the Russian airforce [REF].</code> |
  | <code>Morris was selected in the sixth round of the 2012 NFL Draft with the 173rd overall pick by the Washington Redskins [REF].</code>                                            | <code>The day before the season opener, coach Mike Shanahan announced that Morris would be the starting running back.</code>                   | <code>Despite being able to afford a new car, he still drives his 1991 Mazda 626, which he nicknamed "Bentley" [REF].</code>                                                                                                       |
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/losses.html#tripletloss) with these parameters:
  ```json

  {

      "distance_metric": "TripletDistanceMetric.EUCLIDEAN",

      "triplet_margin": 5

  }

  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: False
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch

- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: None
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: False

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: batch_sampler

- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch | Step | Training Loss | loss   | wikipedia-sections-dev_max_accuracy | wikipedia-sections-test_max_accuracy |
|:-----:|:----:|:-------------:|:------:|:-----------------------------------:|:------------------------------------:|
| 0.16  | 100  | 3.8017        | 3.4221 | 0.698                               | -                                    |
| 0.32  | 200  | 3.0703        | 3.3261 | 0.717                               | -                                    |
| 0.48  | 300  | 2.9683        | 3.2490 | 0.728                               | -                                    |
| 0.64  | 400  | 2.7731        | 3.2340 | 0.733                               | -                                    |
| 0.8   | 500  | 2.9689        | 3.1583 | 0.737                               | -                                    |
| 0.96  | 600  | 2.8955        | 3.1480 | 0.733                               | -                                    |
| 1.0   | 625  | -             | -      | -                                   | 0.708                                |


### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.009 kWh
- **Carbon Emitted**: 0.003 kg of CO2
- **Hours Used**: 0.045 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB

### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```

#### TripletLoss
```bibtex

@misc{hermans2017defense,

    title={In Defense of the Triplet Loss for Person Re-Identification}, 

    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},

    year={2017},

    eprint={1703.07737},

    archivePrefix={arXiv},

    primaryClass={cs.CV}

}

```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->