File size: 69,629 Bytes
4911f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
---

language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3012496
- loss:MatryoshkaLoss
- loss:CachedMultipleNegativesRankingLoss
base_model: google-bert/bert-base-uncased
widget:
- source_sentence: are the sequels better than the prequels?
  sentences:
  - '[''Automatically.'', ''When connected to car Bluetooth and,'', ''Manually.'']'
  - The prequels are also not scared to take risks, making movies which are very different
    from the original trilogy. The sequel saga, on the other hand, are technically
    better made films, the acting is more consistent, the CGI is better and the writing
    is stronger, however it falls down in many other places.
  - While both public and private sectors use budgets as a key planning tool, public
    bodies balance budgets, while private sector firms use budgets to predict operating
    results. The public sector budget matches expenditures on mandated assets and
    services with receipts of public money such as taxes and fees.
- source_sentence: are there bbqs at lake leschenaultia?
  sentences:
  - Vestavia Hills. The hummingbird, or, el zunzún as they are often called in the
    Caribbean, have such a nickname because of their quick movements. The ruby-throated
    hummingbird, the most commonly seen hummingbird in Alabama, is the inspiration
    for this restaurant.
  - Common causes of abdominal tenderness Abdominal tenderness is generally a sign
    of inflammation or other acute processes in one or more organs. The organs are
    located around the tender area. Acute processes mean sudden pressure caused by
    something. For example, twisted or blocked organs can cause point tenderness.
  - ​Located on 168 hectares of nature reserve, Lake Leschenaultia is the perfect
    spot for a family day out in the Perth Hills. The Lake offers canoeing, swimming,
    walk and cycle trails, as well as picnic, BBQ and camping facilities. ... There
    are picnic tables set amongst lovely Wandoo trees.
- source_sentence: how much folic acid should you take prenatal?
  sentences:
  - Folic acid is a pregnancy superhero! Taking a prenatal vitamin with the recommended
    400 micrograms (mcg) of folic acid before and during pregnancy can help prevent
    birth defects of your baby's brain and spinal cord. Take it every day and go ahead
    and have a bowl of fortified cereal, too.
  - '[''You must be unemployed through no fault of your own, as defined by Virginia

    law.'', ''You must have earned at least a minimum amount in wages before you were

    unemployed.'', ''You must be able and available to work, and you must be actively

    seeking employment.'']'
  - Wallpaper is printed in batches of rolls. It is important to have the same batch
    number, to ensure colours match exactly. The batch number is usually located on
    the wallpaper label close to the pattern number. Remember batch numbers also apply
    to white wallpapers, as different batches can be different shades of white.
- source_sentence: what is the difference between minerals and electrolytes?
  sentences:
  - 'North: Just head north of Junk Junction like so. South: Head below Lucky Landing.

    East: You''re basically landing between Lonely Lodge and the Racetrack. West:

    The sign is west of Snobby Shores.'
  - The fasting glucose tolerance test is the simplest and fastest way to measure
    blood glucose and diagnose diabetes. Fasting means that you have had nothing to
    eat or drink (except water) for 8 to 12 hours before the test.
  - In other words, the term “electrolyte” typically implies ionized minerals dissolved
    within water and beverages. Electrolytes are typically minerals, whereas minerals
    may or may not be electrolytes.
- source_sentence: how can i download youtube videos with internet download manager?
  sentences:
  - '[''Go to settings and then click on extensions (top left side in chrome).'',

    ''Minimise your browser and open the location (folder) where IDM is installed.

    ... '', ''Find the file “IDMGCExt. ... '', ''Drag this file to your chrome browser

    and drop to install the IDM extension.'']'
  - Coca-Cola might rot your teeth and load your body with sugar and calories, but
    it's actually an effective and safe first line of treatment for some stomach blockages,
    researchers say.
  - To fix a disabled iPhone or iPad without iTunes, you have to erase your device.
    Click on the "Erase iPhone" option and confirm your selection. Wait for a while
    as the "Find My iPhone" feature will remotely erase your iOS device. Needless
    to say, it will also disable its lock.
datasets:
- sentence-transformers/gooaq
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
co2_eq_emissions:
  emissions: 242.52371141034885
  energy_consumed: 0.623932244779674
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 1.619
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: bert-base-uncased adapter finetuned on GooAQ pairs
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoClimateFEVER
      type: NanoClimateFEVER
    metrics:
    - type: cosine_accuracy@1
      value: 0.24
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.42
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.46
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.56
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.24
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.15999999999999998
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.10800000000000001
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.13166666666666665
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.20833333333333337
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.24166666666666664
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.29666666666666663
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.25516520961338873
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3378809523809523
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.20756281994556017
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoDBPedia
      type: NanoDBPedia
    metrics:
    - type: cosine_accuracy@1
      value: 0.54
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.84
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.92
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.54
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.4866666666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.4440000000000001
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.3899999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.046781664425339056
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.11117774881295754
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.15829952609979633
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.2554819210350403
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4644109757573673
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6797460317460318
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.3253011706807197
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoFEVER
      type: NanoFEVER
    metrics:
    - type: cosine_accuracy@1
      value: 0.54
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.82
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.92
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.54
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2733333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.184
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09599999999999997
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.53
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7766666666666666
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8566666666666666
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8866666666666667
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7348538316509182
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6961904761904762
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6788071339639872
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoFiQA2018
      type: NanoFiQA2018
    metrics:
    - type: cosine_accuracy@1
      value: 0.24
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.4
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.24
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.16
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08800000000000001
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.11474603174603175
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.22874603174603172
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.3166031746031746
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.3986031746031745
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2925721974861802
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3385
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.2372091627126374
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoHotpotQA
      type: NanoHotpotQA
    metrics:
    - type: cosine_accuracy@1
      value: 0.6
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.68
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.74
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.88
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2866666666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.192
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.118
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.3
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.43
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.48
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.59
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5291588954628265
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6639365079365079
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.45230644038161627
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoMSMARCO
      type: NanoMSMARCO
    metrics:
    - type: cosine_accuracy@1
      value: 0.28
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.48
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.54
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.66
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.28
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.16
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.10800000000000001
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.066
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.28
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.48
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.54
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.66
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.46795689507567784
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4079126984126984
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.42763462709531985
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoNFCorpus
      type: NanoNFCorpus
    metrics:
    - type: cosine_accuracy@1
      value: 0.32
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.48
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.56
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.32
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.30666666666666664
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.244
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.184
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.02092621665706462
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.053426190783308986
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.06393651269284006
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.08045448545888809
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.23067635403503162
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.39788888888888885
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.09661097314535905
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoNQ
      type: NanoNQ
    metrics:
    - type: cosine_accuracy@1
      value: 0.38
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.54
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.62
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.74
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.38
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.18
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.128
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07600000000000001
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.38
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.51
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.71
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5386606354769653
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.490547619047619
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.48961052316839493
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoQuoraRetrieval
      type: NanoQuoraRetrieval
    metrics:
    - type: cosine_accuracy@1
      value: 0.84
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.94
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.98
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.84
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.38666666666666655
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.24799999999999997
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.12999999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7573333333333332
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.912
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.946
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9793333333333334
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9157663307482551
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9009999999999999
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8893741502029173
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoSCIDOCS
      type: NanoSCIDOCS
    metrics:
    - type: cosine_accuracy@1
      value: 0.26
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.46
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.68
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.26
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.20666666666666664
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.184
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.126
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.054000000000000006
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.12866666666666668
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.18966666666666668
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.25866666666666666
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.24181947685643387
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3803571428571429
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.18652061021747493
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoArguAna
      type: NanoArguAna
    metrics:
    - type: cosine_accuracy@1
      value: 0.16
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.58
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.74
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.84
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.16
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.19333333333333336
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14800000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08399999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.16
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.58
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.74
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.84
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5045313323048141
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3963333333333333
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.40074428294573644
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoSciFact
      type: NanoSciFact
    metrics:
    - type: cosine_accuracy@1
      value: 0.42
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.58
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.62
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.64
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.42
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.20666666666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07600000000000001
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.4
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.56
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.605
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.64
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5380316349319392
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5056666666666666
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5079821472790408
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoTouche2020
      type: NanoTouche2020
    metrics:
    - type: cosine_accuracy@1
      value: 0.4489795918367347
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8979591836734694
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9183673469387755
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9795918367346939
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4489795918367347
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.4965986394557823
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.45714285714285713
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.38979591836734706
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.03475887574057735
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.11109807516506923
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.1656210426064535
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.2684807614936963
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.43233093716838594
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6532555879494653
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.33493945959592186
      name: Cosine Map@100
  - task:
      type: nano-beir
      name: Nano BEIR
    dataset:
      name: NanoBEIR mean
      type: NanoBEIR_mean
    metrics:
    - type: cosine_accuracy@1
      value: 0.4053061224489796
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.6213814756671899
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6891051805337519
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7676609105180533
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4053061224489796
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2694819466248038
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.20962637362637365
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.14567660910518054
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.24693944527453943
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.3915472856287718
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.4541123273847895
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5280272058403178
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4727642081975526
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5268627619545987
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.40266180779497585
      name: Cosine Map@100
---


# bert-base-uncased adapter finetuned on GooAQ pairs

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("tomaarsen/bert-base-uncased-gooaq")

# Run inference

sentences = [

    'how can i download youtube videos with internet download manager?',

    "['Go to settings and then click on extensions (top left side in chrome).', 'Minimise your browser and open the location (folder) where IDM is installed. ... ', 'Find the file “IDMGCExt. ... ', 'Drag this file to your chrome browser and drop to install the IDM extension.']",

    "Coca-Cola might rot your teeth and load your body with sugar and calories, but it's actually an effective and safe first line of treatment for some stomach blockages, researchers say.",

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | NanoClimateFEVER | NanoDBPedia | NanoFEVER  | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ     | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
|:--------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------|
| cosine_accuracy@1   | 0.24             | 0.54        | 0.54       | 0.24         | 0.6          | 0.28        | 0.32         | 0.38       | 0.84               | 0.26        | 0.16        | 0.42        | 0.449          |

| cosine_accuracy@3   | 0.42             | 0.8         | 0.82       | 0.4          | 0.68         | 0.48        | 0.48         | 0.54       | 0.94               | 0.46        | 0.58        | 0.58        | 0.898          |
| cosine_accuracy@5   | 0.46             | 0.84        | 0.9        | 0.5          | 0.74         | 0.54        | 0.5          | 0.62       | 0.98               | 0.6         | 0.74        | 0.62        | 0.9184         |

| cosine_accuracy@10  | 0.56             | 0.92        | 0.92       | 0.6          | 0.88         | 0.66        | 0.56         | 0.74       | 1.0                | 0.68        | 0.84        | 0.64        | 0.9796         |
| cosine_precision@1  | 0.24             | 0.54        | 0.54       | 0.24         | 0.6          | 0.28        | 0.32         | 0.38       | 0.84               | 0.26        | 0.16        | 0.42        | 0.449          |

| cosine_precision@3  | 0.16             | 0.4867      | 0.2733     | 0.16         | 0.2867       | 0.16        | 0.3067       | 0.18       | 0.3867             | 0.2067      | 0.1933      | 0.2067      | 0.4966         |
| cosine_precision@5  | 0.108            | 0.444       | 0.184      | 0.14         | 0.192        | 0.108       | 0.244        | 0.128      | 0.248              | 0.184       | 0.148       | 0.14        | 0.4571         |

| cosine_precision@10 | 0.07             | 0.39        | 0.096      | 0.088        | 0.118        | 0.066       | 0.184        | 0.076      | 0.13               | 0.126       | 0.084       | 0.076       | 0.3898         |
| cosine_recall@1     | 0.1317           | 0.0468      | 0.53       | 0.1147       | 0.3          | 0.28        | 0.0209       | 0.38       | 0.7573             | 0.054       | 0.16        | 0.4         | 0.0348         |

| cosine_recall@3     | 0.2083           | 0.1112      | 0.7767     | 0.2287       | 0.43         | 0.48        | 0.0534       | 0.51       | 0.912              | 0.1287      | 0.58        | 0.56        | 0.1111         |
| cosine_recall@5     | 0.2417           | 0.1583      | 0.8567     | 0.3166       | 0.48         | 0.54        | 0.0639       | 0.6        | 0.946              | 0.1897      | 0.74        | 0.605       | 0.1656         |

| cosine_recall@10    | 0.2967           | 0.2555      | 0.8867     | 0.3986       | 0.59         | 0.66        | 0.0805       | 0.71       | 0.9793             | 0.2587      | 0.84        | 0.64        | 0.2685         |
| **cosine_ndcg@10**  | **0.2552**       | **0.4644**  | **0.7349** | **0.2926**   | **0.5292**   | **0.468**   | **0.2307**   | **0.5387** | **0.9158**         | **0.2418**  | **0.5045**  | **0.538**   | **0.4323**     |

| cosine_mrr@10       | 0.3379           | 0.6797      | 0.6962     | 0.3385       | 0.6639       | 0.4079      | 0.3979       | 0.4905     | 0.901              | 0.3804      | 0.3963      | 0.5057      | 0.6533         |

| cosine_map@100      | 0.2076           | 0.3253      | 0.6788     | 0.2372       | 0.4523       | 0.4276      | 0.0966       | 0.4896     | 0.8894             | 0.1865      | 0.4007      | 0.508       | 0.3349         |



#### Nano BEIR



* Dataset: `NanoBEIR_mean`

* Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator)



| Metric              | Value      |

|:--------------------|:-----------|

| cosine_accuracy@1   | 0.4053     |

| cosine_accuracy@3   | 0.6214     |

| cosine_accuracy@5   | 0.6891     |

| cosine_accuracy@10  | 0.7677     |

| cosine_precision@1  | 0.4053     |

| cosine_precision@3  | 0.2695     |

| cosine_precision@5  | 0.2096     |

| cosine_precision@10 | 0.1457     |

| cosine_recall@1     | 0.2469     |

| cosine_recall@3     | 0.3915     |

| cosine_recall@5     | 0.4541     |

| cosine_recall@10    | 0.528      |

| **cosine_ndcg@10**  | **0.4728** |

| cosine_mrr@10       | 0.5269     |
| cosine_map@100      | 0.4027     |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### gooaq



* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)

* Size: 3,012,496 training samples

* Columns: <code>question</code> and <code>answer</code>

* Approximate statistics based on the first 1000 samples:

  |         | question                                                                          | answer                                                                              |

  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|

  | type    | string                                                                            | string                                                                              |

  | details | <ul><li>min: 8 tokens</li><li>mean: 11.86 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 60.48 tokens</li><li>max: 138 tokens</li></ul> |

* Samples:

  | question                                                                           | answer                                                                                                                                                                                                                                                                                                                |

  |:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>what is the difference between broilers and layers?</code>                   | <code>An egg laying poultry is called egger or layer whereas broilers are reared for obtaining meat. So a layer should be able to produce more number of large sized eggs, without growing too much. On the other hand, a broiler should yield more meat and hence should be able to grow well.</code>                |

  | <code>what is the difference between chronological order and spatial order?</code> | <code>As a writer, you should always remember that unlike chronological order and the other organizational methods for data, spatial order does not take into account the time. Spatial order is primarily focused on the location. All it does is take into account the location of objects and not the time.</code> |

  | <code>is kamagra same as viagra?</code>                                            | <code>Kamagra is thought to contain the same active ingredient as Viagra, sildenafil citrate. In theory, it should work in much the same way as Viagra, taking about 45 minutes to take effect, and lasting for around 4-6 hours. However, this will vary from person to person.</code>                               |

* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:

  ```json

  {

      "loss": "CachedMultipleNegativesRankingLoss",

      "matryoshka_dims": [
          768,

          512,

          256,

          128,

          64,

          32

      ],

      "matryoshka_weights": [

          1,

          1,

          1,

          1,

          1,

          1

      ],

      "n_dims_per_step": -1

  }

  ```


### Evaluation Dataset

#### gooaq

* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 3,012,496 evaluation samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                          | answer                                                                              |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.88 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 61.03 tokens</li><li>max: 127 tokens</li></ul> |
* Samples:
  | question                                                                     | answer                                                                                                                                                                                                                                                                                                                                     |
  |:-----------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>how do i program my directv remote with my tv?</code>                  | <code>['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']</code>                                                                                               |
  | <code>are rodrigues fruit bats nocturnal?</code>                             | <code>Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.</code>                                                                                                  |
  | <code>why does your heart rate increase during exercise bbc bitesize?</code> | <code>During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json

  {

      "loss": "CachedMultipleNegativesRankingLoss",

      "matryoshka_dims": [

          768,

          512,

          256,

          128,

          64,

          32

      ],

      "matryoshka_weights": [

          1,

          1,

          1,

          1,

          1,

          1

      ],

      "n_dims_per_step": -1

  }

  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 1024
- `per_device_eval_batch_size`: 1024
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 1024
- `per_device_eval_batch_size`: 1024
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch

- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: False

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | Validation Loss | NanoClimateFEVER_cosine_ndcg@10 | NanoDBPedia_cosine_ndcg@10 | NanoFEVER_cosine_ndcg@10 | NanoFiQA2018_cosine_ndcg@10 | NanoHotpotQA_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoNFCorpus_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoQuoraRetrieval_cosine_ndcg@10 | NanoSCIDOCS_cosine_ndcg@10 | NanoArguAna_cosine_ndcg@10 | NanoSciFact_cosine_ndcg@10 | NanoTouche2020_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |

|:------:|:----:|:-------------:|:---------------:|:-------------------------------:|:--------------------------:|:------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:---------------------:|:---------------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:-----------------------------:|:----------------------------:|

| 0      | 0    | -             | -               | 0.1046                          | 0.2182                     | 0.1573                   | 0.0575                      | 0.2597                      | 0.1602                     | 0.0521                      | 0.0493                | 0.7310                            | 0.1320                     | 0.2309                     | 0.1240                     | 0.0970                        | 0.1826                       |

| 0.0010 | 1    | 28.4268       | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.0256 | 25   | 24.7252       | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.0512 | 50   | 13.3628       | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.0768 | 75   | 7.843         | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.1024 | 100  | 5.7393        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.1279 | 125  | 4.6576        | 2.3368          | 0.2890                          | 0.4610                     | 0.7408                   | 0.2882                      | 0.5446                      | 0.4091                     | 0.2179                      | 0.4664                | 0.9079                            | 0.2394                     | 0.5433                     | 0.5003                     | 0.4318                        | 0.4646                       |

| 0.1535 | 150  | 4.0846        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.1791 | 175  | 3.7129        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.2047 | 200  | 3.4899        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.2303 | 225  | 3.3263        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.2559 | 250  | 3.2013        | 1.6545          | 0.2622                          | 0.4744                     | 0.7456                   | 0.2934                      | 0.5371                      | 0.4326                     | 0.2290                      | 0.5157                | 0.9130                            | 0.2577                     | 0.5189                     | 0.5155                     | 0.4302                        | 0.4712                       |

| 0.2815 | 275  | 2.9109        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.3071 | 300  | 2.9064        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.3327 | 325  | 2.8215        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.3582 | 350  | 2.7893        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.3838 | 375  | 2.6663        | 1.4146          | 0.2629                          | 0.4657                     | 0.7330                   | 0.2853                      | 0.5299                      | 0.4346                     | 0.2311                      | 0.5216                | 0.9172                            | 0.2513                     | 0.5133                     | 0.5429                     | 0.4287                        | 0.4706                       |

| 0.4094 | 400  | 2.6672        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.4350 | 425  | 2.5587        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.4606 | 450  | 2.5001        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.4862 | 475  | 2.4476        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.5118 | 500  | 2.4127        | 1.2843          | 0.2565                          | 0.4668                     | 0.7289                   | 0.2838                      | 0.5392                      | 0.4599                     | 0.2284                      | 0.5238                | 0.9021                            | 0.2416                     | 0.4971                     | 0.5349                     | 0.4320                        | 0.4688                       |

| 0.5374 | 525  | 2.414         | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.5629 | 550  | 2.3723        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.5885 | 575  | 2.3418        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.6141 | 600  | 2.2862        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.6397 | 625  | 2.207         | 1.2078          | 0.2613                          | 0.4542                     | 0.7382                   | 0.2817                      | 0.5230                      | 0.4664                     | 0.2282                      | 0.5266                | 0.9095                            | 0.2453                     | 0.5127                     | 0.5414                     | 0.4239                        | 0.4702                       |

| 0.6653 | 650  | 2.2305        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.6909 | 675  | 2.2409        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.7165 | 700  | 2.2001        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.7421 | 725  | 2.1923        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.7677 | 750  | 2.195         | 1.1538          | 0.2549                          | 0.4671                     | 0.7333                   | 0.2804                      | 0.5265                      | 0.4659                     | 0.2321                      | 0.5331                | 0.9086                            | 0.2429                     | 0.5070                     | 0.5430                     | 0.4369                        | 0.4717                       |

| 0.7932 | 775  | 2.1826        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.8188 | 800  | 2.1754        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.8444 | 825  | 2.1141        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.8700 | 850  | 2.1572        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.8956 | 875  | 2.1126        | 1.1256          | 0.2505                          | 0.4622                     | 0.7293                   | 0.2857                      | 0.5286                      | 0.4823                     | 0.2308                      | 0.5397                | 0.9158                            | 0.2412                     | 0.5050                     | 0.5365                     | 0.4387                        | 0.4728                       |

| 0.9212 | 900  | 2.0755        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.9468 | 925  | 2.1032        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.9724 | 950  | 2.1211        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.9980 | 975  | 2.0826        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 1.0    | 977  | -             | -               | 0.2552                          | 0.4644                     | 0.7349                   | 0.2926                      | 0.5292                      | 0.4680                     | 0.2307                      | 0.5387                | 0.9158                            | 0.2418                     | 0.5045                     | 0.5380                     | 0.4323                        | 0.4728                       |





### Environmental Impact

Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).

- **Energy Consumed**: 0.624 kWh

- **Carbon Emitted**: 0.243 kg of CO2

- **Hours Used**: 1.619 hours



### Training Hardware

- **On Cloud**: No

- **GPU Model**: 1 x NVIDIA GeForce RTX 3090

- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K

- **RAM Size**: 31.78 GB



### Framework Versions

- Python: 3.11.6

- Sentence Transformers: 3.4.0.dev0

- Transformers: 4.46.2

- PyTorch: 2.5.0+cu121

- Accelerate: 0.35.0.dev0

- Datasets: 2.20.0

- Tokenizers: 0.20.3



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### MatryoshkaLoss

```bibtex

@misc{kusupati2024matryoshka,

    title={Matryoshka Representation Learning},

    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},

    year={2024},

    eprint={2205.13147},

    archivePrefix={arXiv},

    primaryClass={cs.LG}

}

```



#### CachedMultipleNegativesRankingLoss

```bibtex

@misc{gao2021scaling,

    title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},

    author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},

    year={2021},

    eprint={2101.06983},

    archivePrefix={arXiv},

    primaryClass={cs.LG}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->