tollefj commited on
Commit
5097e9a
·
verified ·
1 Parent(s): dd5f972

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sentence-transformers
3
+ pipeline_tag: sentence-similarity
4
+ tags:
5
+ - sentence-transformers
6
+ - feature-extraction
7
+ - sentence-similarity
8
+ - transformers
9
+
10
+ ---
11
+
12
+ # tollefj/norbert3-multiloss-embedder
13
+
14
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
+
16
+ <!--- Describe your model here -->
17
+
18
+ ## Usage (Sentence-Transformers)
19
+
20
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
21
+
22
+ ```
23
+ pip install -U sentence-transformers
24
+ ```
25
+
26
+ Then you can use the model like this:
27
+
28
+ ```python
29
+ from sentence_transformers import SentenceTransformer
30
+ sentences = ["This is an example sentence", "Each sentence is converted"]
31
+
32
+ model = SentenceTransformer('tollefj/norbert3-multiloss-embedder')
33
+ embeddings = model.encode(sentences)
34
+ print(embeddings)
35
+ ```
36
+
37
+
38
+
39
+ ## Usage (HuggingFace Transformers)
40
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
41
+
42
+ ```python
43
+ from transformers import AutoTokenizer, AutoModel
44
+ import torch
45
+
46
+
47
+ #Mean Pooling - Take attention mask into account for correct averaging
48
+ def mean_pooling(model_output, attention_mask):
49
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
50
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
51
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
52
+
53
+
54
+ # Sentences we want sentence embeddings for
55
+ sentences = ['This is an example sentence', 'Each sentence is converted']
56
+
57
+ # Load model from HuggingFace Hub
58
+ tokenizer = AutoTokenizer.from_pretrained('tollefj/norbert3-multiloss-embedder')
59
+ model = AutoModel.from_pretrained('tollefj/norbert3-multiloss-embedder')
60
+
61
+ # Tokenize sentences
62
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
63
+
64
+ # Compute token embeddings
65
+ with torch.no_grad():
66
+ model_output = model(**encoded_input)
67
+
68
+ # Perform pooling. In this case, mean pooling.
69
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
70
+
71
+ print("Sentence embeddings:")
72
+ print(sentence_embeddings)
73
+ ```
74
+
75
+
76
+
77
+ ## Evaluation Results
78
+
79
+ <!--- Describe how your model was evaluated -->
80
+
81
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=tollefj/norbert3-multiloss-embedder)
82
+
83
+
84
+ ## Training
85
+ The model was trained with the parameters:
86
+
87
+ **DataLoader**:
88
+
89
+ `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 1952 with parameters:
90
+ ```
91
+ {'batch_size': 32}
92
+ ```
93
+
94
+ **Loss**:
95
+
96
+ `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
97
+
98
+ **DataLoader**:
99
+
100
+ `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 4002 with parameters:
101
+ ```
102
+ {'batch_size': 32}
103
+ ```
104
+
105
+ **Loss**:
106
+
107
+ `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
108
+ ```
109
+ {'scale': 20.0, 'similarity_fct': 'cos_sim'}
110
+ ```
111
+
112
+ Parameters of the fit()-Method:
113
+ ```
114
+ {
115
+ "epochs": 1,
116
+ "evaluation_steps": 100,
117
+ "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
118
+ "max_grad_norm": 1,
119
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
120
+ "optimizer_params": {
121
+ "lr": 5e-05
122
+ },
123
+ "scheduler": "WarmupLinear",
124
+ "steps_per_epoch": null,
125
+ "warmup_steps": 596,
126
+ "weight_decay": 0.01
127
+ }
128
+ ```
129
+
130
+
131
+ ## Full Model Architecture
132
+ ```
133
+ SentenceTransformer(
134
+ (0): Transformer({'max_seq_length': 192, 'do_lower_case': False}) with Transformer model: NorbertModel
135
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
136
+ )
137
+ ```
138
+
139
+ ## Citing & Authors
140
+
141
+ <!--- Describe where people can find more information -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "ltg/norbert3-base",
3
+ "architectures": [
4
+ "NorbertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_norbert.NorbertConfig",
9
+ "AutoModel": "modeling_norbert.NorbertModel",
10
+ "AutoModelForMaskedLM": "ltg/norbert3-base--modeling_norbert.NorbertForMaskedLM",
11
+ "AutoModelForMultipleChoice": "ltg/norbert3-base--modeling_norbert.NorbertForMultipleChoice",
12
+ "AutoModelForQuestionAnswering": "ltg/norbert3-base--modeling_norbert.NorbertForQuestionAnswering",
13
+ "AutoModelForSequenceClassification": "ltg/norbert3-base--modeling_norbert.NorbertForSequenceClassification",
14
+ "AutoModelForTokenClassification": "ltg/norbert3-base--modeling_norbert.NorbertForTokenClassification"
15
+ },
16
+ "hidden_dropout_prob": 0.1,
17
+ "hidden_size": 768,
18
+ "intermediate_size": 2048,
19
+ "layer_norm_eps": 1e-07,
20
+ "max_position_embeddings": 512,
21
+ "num_attention_heads": 12,
22
+ "num_hidden_layers": 12,
23
+ "output_all_encoded_layers": true,
24
+ "position_bucket_size": 32,
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.38.2",
27
+ "vocab_size": 50000
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.5.1",
4
+ "transformers": "4.38.2",
5
+ "pytorch": "2.2.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
configuration_norbert.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+
3
+
4
+ class NorbertConfig(PretrainedConfig):
5
+ """Configuration class to store the configuration of a `NorbertModel`.
6
+ """
7
+ def __init__(
8
+ self,
9
+ vocab_size=50000,
10
+ attention_probs_dropout_prob=0.1,
11
+ hidden_dropout_prob=0.1,
12
+ hidden_size=768,
13
+ intermediate_size=2048,
14
+ max_position_embeddings=512,
15
+ position_bucket_size=32,
16
+ num_attention_heads=12,
17
+ num_hidden_layers=12,
18
+ layer_norm_eps=1.0e-7,
19
+ output_all_encoded_layers=True,
20
+ **kwargs,
21
+ ):
22
+ super().__init__(**kwargs)
23
+
24
+ self.vocab_size = vocab_size
25
+ self.hidden_size = hidden_size
26
+ self.num_hidden_layers = num_hidden_layers
27
+ self.num_attention_heads = num_attention_heads
28
+ self.intermediate_size = intermediate_size
29
+ self.hidden_dropout_prob = hidden_dropout_prob
30
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
31
+ self.max_position_embeddings = max_position_embeddings
32
+ self.output_all_encoded_layers = output_all_encoded_layers
33
+ self.position_bucket_size = position_bucket_size
34
+ self.layer_norm_eps = layer_norm_eps
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8aa5e291ba60a59390f0db357fe7925baf3c5d1813a7d5e341e21b7b47ab2d7
3
+ size 518941336
modeling_norbert.py ADDED
@@ -0,0 +1,635 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import List, Optional, Tuple, Union
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ from torch.utils import checkpoint
8
+
9
+ from .configuration_norbert import NorbertConfig
10
+ from transformers.modeling_utils import PreTrainedModel
11
+ from transformers.activations import gelu_new
12
+ from transformers.modeling_outputs import (
13
+ MaskedLMOutput,
14
+ MultipleChoiceModelOutput,
15
+ QuestionAnsweringModelOutput,
16
+ SequenceClassifierOutput,
17
+ TokenClassifierOutput,
18
+ BaseModelOutput
19
+ )
20
+ from transformers.pytorch_utils import softmax_backward_data
21
+
22
+
23
+ class Encoder(nn.Module):
24
+ def __init__(self, config, activation_checkpointing=False):
25
+ super().__init__()
26
+ self.layers = nn.ModuleList([EncoderLayer(config) for _ in range(config.num_hidden_layers)])
27
+
28
+ for i, layer in enumerate(self.layers):
29
+ layer.mlp.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
30
+ layer.mlp.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
31
+
32
+ self.activation_checkpointing = activation_checkpointing
33
+
34
+ def forward(self, hidden_states, attention_mask, relative_embedding):
35
+ hidden_states, attention_probs = [hidden_states], []
36
+
37
+ for layer in self.layers:
38
+ if self.activation_checkpointing:
39
+ hidden_state, attention_p = checkpoint.checkpoint(layer, hidden_states[-1], attention_mask, relative_embedding)
40
+ else:
41
+ hidden_state, attention_p = layer(hidden_states[-1], attention_mask, relative_embedding)
42
+
43
+ hidden_states.append(hidden_state)
44
+ attention_probs.append(attention_p)
45
+
46
+ return hidden_states, attention_probs
47
+
48
+
49
+ class MaskClassifier(nn.Module):
50
+ def __init__(self, config, subword_embedding):
51
+ super().__init__()
52
+ self.nonlinearity = nn.Sequential(
53
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
54
+ nn.Linear(config.hidden_size, config.hidden_size),
55
+ nn.GELU(),
56
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
57
+ nn.Dropout(config.hidden_dropout_prob),
58
+ nn.Linear(subword_embedding.size(1), subword_embedding.size(0))
59
+ )
60
+
61
+ def forward(self, x, masked_lm_labels=None):
62
+ if masked_lm_labels is not None:
63
+ x = torch.index_select(x.flatten(0, 1), 0, torch.nonzero(masked_lm_labels.flatten() != -100).squeeze())
64
+ x = self.nonlinearity(x)
65
+ return x
66
+
67
+
68
+ class EncoderLayer(nn.Module):
69
+ def __init__(self, config):
70
+ super().__init__()
71
+ self.attention = Attention(config)
72
+ self.mlp = FeedForward(config)
73
+
74
+ def forward(self, x, padding_mask, relative_embedding):
75
+ attention_output, attention_probs = self.attention(x, padding_mask, relative_embedding)
76
+ x = x + attention_output
77
+ x = x + self.mlp(x)
78
+ return x, attention_probs
79
+
80
+
81
+ class GeGLU(nn.Module):
82
+ def forward(self, x):
83
+ x, gate = x.chunk(2, dim=-1)
84
+ x = x * gelu_new(gate)
85
+ return x
86
+
87
+
88
+ class FeedForward(nn.Module):
89
+ def __init__(self, config):
90
+ super().__init__()
91
+ self.mlp = nn.Sequential(
92
+ nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False),
93
+ nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False),
94
+ GeGLU(),
95
+ nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False),
96
+ nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
97
+ nn.Dropout(config.hidden_dropout_prob)
98
+ )
99
+
100
+ def forward(self, x):
101
+ return self.mlp(x)
102
+
103
+
104
+ class MaskedSoftmax(torch.autograd.Function):
105
+ @staticmethod
106
+ def forward(self, x, mask, dim):
107
+ self.dim = dim
108
+ x.masked_fill_(mask, float('-inf'))
109
+ x = torch.softmax(x, self.dim)
110
+ x.masked_fill_(mask, 0.0)
111
+ self.save_for_backward(x)
112
+ return x
113
+
114
+ @staticmethod
115
+ def backward(self, grad_output):
116
+ output, = self.saved_tensors
117
+ input_grad = softmax_backward_data(self, grad_output, output, self.dim, output)
118
+ return input_grad, None, None
119
+
120
+
121
+ class Attention(nn.Module):
122
+ def __init__(self, config):
123
+ super().__init__()
124
+
125
+ self.config = config
126
+
127
+ if config.hidden_size % config.num_attention_heads != 0:
128
+ raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}")
129
+
130
+ self.hidden_size = config.hidden_size
131
+ self.num_heads = config.num_attention_heads
132
+ self.head_size = config.hidden_size // config.num_attention_heads
133
+
134
+ self.in_proj_qk = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
135
+ self.in_proj_v = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
136
+ self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
137
+
138
+ self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
139
+ self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)
140
+
141
+ position_indices = torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(1) \
142
+ - torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(0)
143
+ position_indices = self.make_log_bucket_position(position_indices, config.position_bucket_size, config.max_position_embeddings)
144
+ position_indices = config.position_bucket_size - 1 + position_indices
145
+ self.register_buffer("position_indices", position_indices, persistent=True)
146
+
147
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
148
+ self.scale = 1.0 / math.sqrt(3 * self.head_size)
149
+
150
+ def make_log_bucket_position(self, relative_pos, bucket_size, max_position):
151
+ sign = torch.sign(relative_pos)
152
+ mid = bucket_size // 2
153
+ abs_pos = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1))
154
+ log_pos = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid
155
+ bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
156
+ return bucket_pos
157
+
158
+ def compute_attention_scores(self, hidden_states, relative_embedding):
159
+ key_len, batch_size, _ = hidden_states.size()
160
+ query_len = key_len
161
+
162
+ if self.position_indices.size(0) < query_len:
163
+ position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze(1) \
164
+ - torch.arange(query_len, dtype=torch.long).unsqueeze(0)
165
+ position_indices = self.make_log_bucket_position(position_indices, self.position_bucket_size, 512)
166
+ position_indices = self.position_bucket_size - 1 + position_indices
167
+ self.position_indices = position_indices.to(hidden_states.device)
168
+
169
+ hidden_states = self.pre_layer_norm(hidden_states)
170
+
171
+ query, key = self.in_proj_qk(hidden_states).chunk(2, dim=2) # shape: [T, B, D]
172
+ value = self.in_proj_v(hidden_states) # shape: [T, B, D]
173
+
174
+ query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
175
+ key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
176
+ value = value.view(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
177
+
178
+ attention_scores = torch.bmm(query, key.transpose(1, 2) * self.scale)
179
+
180
+ pos = self.in_proj_qk(self.dropout(relative_embedding)) # shape: [2T-1, 2D]
181
+ query_pos, key_pos = pos.view(-1, self.num_heads, 2*self.head_size).chunk(2, dim=2)
182
+ query = query.view(batch_size, self.num_heads, query_len, self.head_size)
183
+ key = key.view(batch_size, self.num_heads, query_len, self.head_size)
184
+
185
+ attention_c_p = torch.einsum("bhqd,khd->bhqk", query, key_pos.squeeze(1) * self.scale)
186
+ attention_p_c = torch.einsum("bhkd,qhd->bhqk", key * self.scale, query_pos.squeeze(1))
187
+
188
+ position_indices = self.position_indices[:query_len, :key_len].expand(batch_size, self.num_heads, -1, -1)
189
+ attention_c_p = attention_c_p.gather(3, position_indices)
190
+ attention_p_c = attention_p_c.gather(2, position_indices)
191
+
192
+ attention_scores = attention_scores.view(batch_size, self.num_heads, query_len, key_len)
193
+ attention_scores.add_(attention_c_p)
194
+ attention_scores.add_(attention_p_c)
195
+
196
+ return attention_scores, value
197
+
198
+ def compute_output(self, attention_probs, value):
199
+ attention_probs = self.dropout(attention_probs)
200
+ context = torch.bmm(attention_probs.flatten(0, 1), value) # shape: [B*H, Q, D]
201
+ context = context.transpose(0, 1).reshape(context.size(1), -1, self.hidden_size) # shape: [Q, B, H*D]
202
+ context = self.out_proj(context)
203
+ context = self.post_layer_norm(context)
204
+ context = self.dropout(context)
205
+ return context
206
+
207
+ def forward(self, hidden_states, attention_mask, relative_embedding):
208
+ attention_scores, value = self.compute_attention_scores(hidden_states, relative_embedding)
209
+ attention_probs = MaskedSoftmax.apply(attention_scores, attention_mask, -1)
210
+ return self.compute_output(attention_probs, value), attention_probs.detach()
211
+
212
+
213
+ class Embedding(nn.Module):
214
+ def __init__(self, config):
215
+ super().__init__()
216
+ self.hidden_size = config.hidden_size
217
+
218
+ self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
219
+ self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
220
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
221
+
222
+ self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
223
+ self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
224
+
225
+ def forward(self, input_ids):
226
+ word_embedding = self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))
227
+ relative_embeddings = self.relative_layer_norm(self.relative_embedding)
228
+ return word_embedding, relative_embeddings
229
+
230
+
231
+ #
232
+ # HuggingFace wrappers
233
+ #
234
+
235
+ class NorbertPreTrainedModel(PreTrainedModel):
236
+ config_class = NorbertConfig
237
+ base_model_prefix = "norbert3"
238
+ supports_gradient_checkpointing = True
239
+
240
+ def _set_gradient_checkpointing(self, module, value=False):
241
+ if isinstance(module, Encoder):
242
+ module.activation_checkpointing = value
243
+
244
+ def _init_weights(self, module):
245
+ std = math.sqrt(2.0 / (5.0 * self.hidden_size))
246
+
247
+ if isinstance(module, nn.Linear):
248
+ nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
249
+ if module.bias is not None:
250
+ module.bias.data.zero_()
251
+ elif isinstance(module, nn.Embedding):
252
+ nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
253
+ elif isinstance(module, nn.LayerNorm):
254
+ module.bias.data.zero_()
255
+ module.weight.data.fill_(1.0)
256
+
257
+
258
+ class NorbertModel(NorbertPreTrainedModel):
259
+ def __init__(self, config, add_mlm_layer=False, gradient_checkpointing=False, **kwargs):
260
+ super().__init__(config, **kwargs)
261
+ self.config = config
262
+ self.hidden_size = config.hidden_size
263
+
264
+ self.embedding = Embedding(config)
265
+ self.transformer = Encoder(config, activation_checkpointing=gradient_checkpointing)
266
+ self.classifier = MaskClassifier(config, self.embedding.word_embedding.weight) if add_mlm_layer else None
267
+
268
+ def get_input_embeddings(self):
269
+ return self.embedding.word_embedding
270
+
271
+ def set_input_embeddings(self, value):
272
+ self.embedding.word_embedding = value
273
+
274
+ def get_contextualized_embeddings(
275
+ self,
276
+ input_ids: Optional[torch.Tensor] = None,
277
+ attention_mask: Optional[torch.Tensor] = None
278
+ ) -> List[torch.Tensor]:
279
+ if input_ids is not None:
280
+ input_shape = input_ids.size()
281
+ else:
282
+ raise ValueError("You have to specify input_ids")
283
+
284
+ batch_size, seq_length = input_shape
285
+ device = input_ids.device
286
+
287
+ if attention_mask is None:
288
+ attention_mask = torch.zeros(batch_size, seq_length, dtype=torch.bool, device=device)
289
+ else:
290
+ attention_mask = ~attention_mask.bool()
291
+ attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
292
+
293
+ static_embeddings, relative_embedding = self.embedding(input_ids.t())
294
+ contextualized_embeddings, attention_probs = self.transformer(static_embeddings, attention_mask, relative_embedding)
295
+ contextualized_embeddings = [e.transpose(0, 1) for e in contextualized_embeddings]
296
+ last_layer = contextualized_embeddings[-1]
297
+ contextualized_embeddings = [contextualized_embeddings[0]] + [
298
+ contextualized_embeddings[i] - contextualized_embeddings[i - 1]
299
+ for i in range(1, len(contextualized_embeddings))
300
+ ]
301
+ return last_layer, contextualized_embeddings, attention_probs
302
+
303
+ def forward(
304
+ self,
305
+ input_ids: Optional[torch.Tensor] = None,
306
+ attention_mask: Optional[torch.Tensor] = None,
307
+ token_type_ids: Optional[torch.Tensor] = None,
308
+ position_ids: Optional[torch.Tensor] = None,
309
+ output_hidden_states: Optional[bool] = None,
310
+ output_attentions: Optional[bool] = None,
311
+ return_dict: Optional[bool] = None,
312
+ **kwargs
313
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
314
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
315
+
316
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
317
+
318
+ if not return_dict:
319
+ return (
320
+ sequence_output,
321
+ *([contextualized_embeddings] if output_hidden_states else []),
322
+ *([attention_probs] if output_attentions else [])
323
+ )
324
+
325
+ return BaseModelOutput(
326
+ last_hidden_state=sequence_output,
327
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
328
+ attentions=attention_probs if output_attentions else None
329
+ )
330
+
331
+
332
+ class NorbertForMaskedLM(NorbertModel):
333
+ _keys_to_ignore_on_load_unexpected = ["head"]
334
+
335
+ def __init__(self, config, **kwargs):
336
+ super().__init__(config, add_mlm_layer=True, **kwargs)
337
+
338
+ def get_output_embeddings(self):
339
+ return self.classifier.nonlinearity[-1].weight
340
+
341
+ def set_output_embeddings(self, new_embeddings):
342
+ self.classifier.nonlinearity[-1].weight = new_embeddings
343
+
344
+ def forward(
345
+ self,
346
+ input_ids: Optional[torch.Tensor] = None,
347
+ attention_mask: Optional[torch.Tensor] = None,
348
+ token_type_ids: Optional[torch.Tensor] = None,
349
+ position_ids: Optional[torch.Tensor] = None,
350
+ output_hidden_states: Optional[bool] = None,
351
+ output_attentions: Optional[bool] = None,
352
+ return_dict: Optional[bool] = None,
353
+ labels: Optional[torch.LongTensor] = None,
354
+ **kwargs
355
+ ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
356
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
357
+
358
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
359
+ subword_prediction = self.classifier(sequence_output)
360
+ subword_prediction[:, :, :106+1] = float("-inf")
361
+
362
+ masked_lm_loss = None
363
+ if labels is not None:
364
+ masked_lm_loss = F.cross_entropy(subword_prediction.flatten(0, 1), labels.flatten())
365
+
366
+ if not return_dict:
367
+ output = (
368
+ subword_prediction,
369
+ *([contextualized_embeddings] if output_hidden_states else []),
370
+ *([attention_probs] if output_attentions else [])
371
+ )
372
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
373
+
374
+ return MaskedLMOutput(
375
+ loss=masked_lm_loss,
376
+ logits=subword_prediction,
377
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
378
+ attentions=attention_probs if output_attentions else None
379
+ )
380
+
381
+
382
+ class Classifier(nn.Module):
383
+ def __init__(self, config, num_labels: int):
384
+ super().__init__()
385
+
386
+ drop_out = getattr(config, "cls_dropout", None)
387
+ drop_out = config.hidden_dropout_prob if drop_out is None else drop_out
388
+
389
+ self.nonlinearity = nn.Sequential(
390
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
391
+ nn.Linear(config.hidden_size, config.hidden_size),
392
+ nn.GELU(),
393
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
394
+ nn.Dropout(drop_out),
395
+ nn.Linear(config.hidden_size, num_labels)
396
+ )
397
+
398
+ def forward(self, x):
399
+ x = self.nonlinearity(x)
400
+ return x
401
+
402
+
403
+ class NorbertForSequenceClassification(NorbertModel):
404
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
405
+ _keys_to_ignore_on_load_missing = ["head"]
406
+
407
+ def __init__(self, config, **kwargs):
408
+ super().__init__(config, add_mlm_layer=False, **kwargs)
409
+
410
+ self.num_labels = config.num_labels
411
+ self.head = Classifier(config, self.num_labels)
412
+
413
+ def forward(
414
+ self,
415
+ input_ids: Optional[torch.Tensor] = None,
416
+ attention_mask: Optional[torch.Tensor] = None,
417
+ token_type_ids: Optional[torch.Tensor] = None,
418
+ position_ids: Optional[torch.Tensor] = None,
419
+ output_attentions: Optional[bool] = None,
420
+ output_hidden_states: Optional[bool] = None,
421
+ return_dict: Optional[bool] = None,
422
+ labels: Optional[torch.LongTensor] = None,
423
+ **kwargs
424
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
425
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
426
+
427
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
428
+ logits = self.head(sequence_output[:, 0, :])
429
+
430
+ loss = None
431
+ if labels is not None:
432
+ if self.config.problem_type is None:
433
+ if self.num_labels == 1:
434
+ self.config.problem_type = "regression"
435
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
436
+ self.config.problem_type = "single_label_classification"
437
+ else:
438
+ self.config.problem_type = "multi_label_classification"
439
+
440
+ if self.config.problem_type == "regression":
441
+ loss_fct = nn.MSELoss()
442
+ if self.num_labels == 1:
443
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
444
+ else:
445
+ loss = loss_fct(logits, labels)
446
+ elif self.config.problem_type == "single_label_classification":
447
+ loss_fct = nn.CrossEntropyLoss()
448
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
449
+ elif self.config.problem_type == "multi_label_classification":
450
+ loss_fct = nn.BCEWithLogitsLoss()
451
+ loss = loss_fct(logits, labels)
452
+
453
+ if not return_dict:
454
+ output = (
455
+ logits,
456
+ *([contextualized_embeddings] if output_hidden_states else []),
457
+ *([attention_probs] if output_attentions else [])
458
+ )
459
+ return ((loss,) + output) if loss is not None else output
460
+
461
+ return SequenceClassifierOutput(
462
+ loss=loss,
463
+ logits=logits,
464
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
465
+ attentions=attention_probs if output_attentions else None
466
+ )
467
+
468
+
469
+ class NorbertForTokenClassification(NorbertModel):
470
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
471
+ _keys_to_ignore_on_load_missing = ["head"]
472
+
473
+ def __init__(self, config, **kwargs):
474
+ super().__init__(config, add_mlm_layer=False, **kwargs)
475
+
476
+ self.num_labels = config.num_labels
477
+ self.head = Classifier(config, self.num_labels)
478
+
479
+ def forward(
480
+ self,
481
+ input_ids: Optional[torch.Tensor] = None,
482
+ attention_mask: Optional[torch.Tensor] = None,
483
+ token_type_ids: Optional[torch.Tensor] = None,
484
+ position_ids: Optional[torch.Tensor] = None,
485
+ output_attentions: Optional[bool] = None,
486
+ output_hidden_states: Optional[bool] = None,
487
+ return_dict: Optional[bool] = None,
488
+ labels: Optional[torch.LongTensor] = None,
489
+ **kwargs
490
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
491
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
492
+
493
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
494
+ logits = self.head(sequence_output)
495
+
496
+ loss = None
497
+ if labels is not None:
498
+ loss_fct = nn.CrossEntropyLoss()
499
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
500
+
501
+ if not return_dict:
502
+ output = (
503
+ logits,
504
+ *([contextualized_embeddings] if output_hidden_states else []),
505
+ *([attention_probs] if output_attentions else [])
506
+ )
507
+ return ((loss,) + output) if loss is not None else output
508
+
509
+ return TokenClassifierOutput(
510
+ loss=loss,
511
+ logits=logits,
512
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
513
+ attentions=attention_probs if output_attentions else None
514
+ )
515
+
516
+
517
+ class NorbertForQuestionAnswering(NorbertModel):
518
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
519
+ _keys_to_ignore_on_load_missing = ["head"]
520
+
521
+ def __init__(self, config, **kwargs):
522
+ super().__init__(config, add_mlm_layer=False, **kwargs)
523
+
524
+ self.num_labels = config.num_labels
525
+ self.head = Classifier(config, self.num_labels)
526
+
527
+ def forward(
528
+ self,
529
+ input_ids: Optional[torch.Tensor] = None,
530
+ attention_mask: Optional[torch.Tensor] = None,
531
+ token_type_ids: Optional[torch.Tensor] = None,
532
+ position_ids: Optional[torch.Tensor] = None,
533
+ output_attentions: Optional[bool] = None,
534
+ output_hidden_states: Optional[bool] = None,
535
+ return_dict: Optional[bool] = None,
536
+ start_positions: Optional[torch.Tensor] = None,
537
+ end_positions: Optional[torch.Tensor] = None,
538
+ **kwargs
539
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
540
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
541
+
542
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
543
+ logits = self.head(sequence_output)
544
+
545
+ start_logits, end_logits = logits.split(1, dim=-1)
546
+ start_logits = start_logits.squeeze(-1).contiguous()
547
+ end_logits = end_logits.squeeze(-1).contiguous()
548
+
549
+ total_loss = None
550
+ if start_positions is not None and end_positions is not None:
551
+ # If we are on multi-GPU, split add a dimension
552
+ if len(start_positions.size()) > 1:
553
+ start_positions = start_positions.squeeze(-1)
554
+ if len(end_positions.size()) > 1:
555
+ end_positions = end_positions.squeeze(-1)
556
+
557
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
558
+ ignored_index = start_logits.size(1)
559
+ start_positions = start_positions.clamp(0, ignored_index)
560
+ end_positions = end_positions.clamp(0, ignored_index)
561
+
562
+ loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
563
+ start_loss = loss_fct(start_logits, start_positions)
564
+ end_loss = loss_fct(end_logits, end_positions)
565
+ total_loss = (start_loss + end_loss) / 2
566
+
567
+ if not return_dict:
568
+ output = (
569
+ start_logits,
570
+ end_logits,
571
+ *([contextualized_embeddings] if output_hidden_states else []),
572
+ *([attention_probs] if output_attentions else [])
573
+ )
574
+ return ((total_loss,) + output) if total_loss is not None else output
575
+
576
+ return QuestionAnsweringModelOutput(
577
+ loss=total_loss,
578
+ start_logits=start_logits,
579
+ end_logits=end_logits,
580
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
581
+ attentions=attention_probs if output_attentions else None
582
+ )
583
+
584
+
585
+ class NorbertForMultipleChoice(NorbertModel):
586
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
587
+ _keys_to_ignore_on_load_missing = ["head"]
588
+
589
+ def __init__(self, config, **kwargs):
590
+ super().__init__(config, add_mlm_layer=False, **kwargs)
591
+
592
+ self.num_labels = getattr(config, "num_labels", 2)
593
+ self.head = Classifier(config, self.num_labels)
594
+
595
+ def forward(
596
+ self,
597
+ input_ids: Optional[torch.Tensor] = None,
598
+ attention_mask: Optional[torch.Tensor] = None,
599
+ token_type_ids: Optional[torch.Tensor] = None,
600
+ position_ids: Optional[torch.Tensor] = None,
601
+ labels: Optional[torch.Tensor] = None,
602
+ output_attentions: Optional[bool] = None,
603
+ output_hidden_states: Optional[bool] = None,
604
+ return_dict: Optional[bool] = None,
605
+ **kwargs
606
+ ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
607
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
608
+ num_choices = input_ids.shape[1]
609
+
610
+ flat_input_ids = input_ids.view(-1, input_ids.size(-1))
611
+ flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
612
+
613
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(flat_input_ids, flat_attention_mask)
614
+ logits = self.head(sequence_output)
615
+ reshaped_logits = logits.view(-1, num_choices)
616
+
617
+ loss = None
618
+ if labels is not None:
619
+ loss_fct = nn.CrossEntropyLoss()
620
+ loss = loss_fct(reshaped_logits, labels)
621
+
622
+ if not return_dict:
623
+ output = (
624
+ reshaped_logits,
625
+ *([contextualized_embeddings] if output_hidden_states else []),
626
+ *([attention_probs] if output_attentions else [])
627
+ )
628
+ return ((loss,) + output) if loss is not None else output
629
+
630
+ return MultipleChoiceModelOutput(
631
+ loss=loss,
632
+ logits=reshaped_logits,
633
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
634
+ attentions=attention_probs if output_attentions else None
635
+ )
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[BOS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[EOS]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,870 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[UNK]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[CLS]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[PAD]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "5": {
44
+ "content": "[BOS]",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "6": {
52
+ "content": "[EOS]",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "7": {
60
+ "content": "[MASK_0]",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "8": {
68
+ "content": "[MASK_1]",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "9": {
76
+ "content": "[MASK_2]",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "10": {
84
+ "content": "[MASK_3]",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "11": {
92
+ "content": "[MASK_4]",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "12": {
100
+ "content": "[MASK_5]",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "13": {
108
+ "content": "[MASK_6]",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "14": {
116
+ "content": "[MASK_7]",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "15": {
124
+ "content": "[MASK_8]",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "16": {
132
+ "content": "[MASK_9]",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "17": {
140
+ "content": "[MASK_10]",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "18": {
148
+ "content": "[MASK_11]",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "19": {
156
+ "content": "[MASK_12]",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "20": {
164
+ "content": "[MASK_13]",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "21": {
172
+ "content": "[MASK_14]",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "22": {
180
+ "content": "[MASK_15]",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "23": {
188
+ "content": "[MASK_16]",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "24": {
196
+ "content": "[MASK_17]",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "25": {
204
+ "content": "[MASK_18]",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "26": {
212
+ "content": "[MASK_19]",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "27": {
220
+ "content": "[MASK_20]",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "28": {
228
+ "content": "[MASK_21]",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "29": {
236
+ "content": "[MASK_22]",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "30": {
244
+ "content": "[MASK_23]",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "31": {
252
+ "content": "[MASK_24]",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "32": {
260
+ "content": "[MASK_25]",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "33": {
268
+ "content": "[MASK_26]",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "34": {
276
+ "content": "[MASK_27]",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "35": {
284
+ "content": "[MASK_28]",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "36": {
292
+ "content": "[MASK_29]",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "37": {
300
+ "content": "[MASK_30]",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "38": {
308
+ "content": "[MASK_31]",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "39": {
316
+ "content": "[MASK_32]",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "40": {
324
+ "content": "[MASK_33]",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "41": {
332
+ "content": "[MASK_34]",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "42": {
340
+ "content": "[MASK_35]",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "43": {
348
+ "content": "[MASK_36]",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "44": {
356
+ "content": "[MASK_37]",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "45": {
364
+ "content": "[MASK_38]",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "46": {
372
+ "content": "[MASK_39]",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "47": {
380
+ "content": "[MASK_40]",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "48": {
388
+ "content": "[MASK_41]",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "49": {
396
+ "content": "[MASK_42]",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "50": {
404
+ "content": "[MASK_43]",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "51": {
412
+ "content": "[MASK_44]",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "52": {
420
+ "content": "[MASK_45]",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "53": {
428
+ "content": "[MASK_46]",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "54": {
436
+ "content": "[MASK_47]",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "55": {
444
+ "content": "[MASK_48]",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "56": {
452
+ "content": "[MASK_49]",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "57": {
460
+ "content": "[MASK_50]",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "58": {
468
+ "content": "[MASK_51]",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "59": {
476
+ "content": "[MASK_52]",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "60": {
484
+ "content": "[MASK_53]",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "61": {
492
+ "content": "[MASK_54]",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "62": {
500
+ "content": "[MASK_55]",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "63": {
508
+ "content": "[MASK_56]",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "64": {
516
+ "content": "[MASK_57]",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "65": {
524
+ "content": "[MASK_58]",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "66": {
532
+ "content": "[MASK_59]",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "67": {
540
+ "content": "[MASK_60]",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "68": {
548
+ "content": "[MASK_61]",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "69": {
556
+ "content": "[MASK_62]",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "70": {
564
+ "content": "[MASK_63]",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "71": {
572
+ "content": "[MASK_64]",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "72": {
580
+ "content": "[MASK_65]",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "73": {
588
+ "content": "[MASK_66]",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "74": {
596
+ "content": "[MASK_67]",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "75": {
604
+ "content": "[MASK_68]",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "76": {
612
+ "content": "[MASK_69]",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "77": {
620
+ "content": "[MASK_70]",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "78": {
628
+ "content": "[MASK_71]",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "79": {
636
+ "content": "[MASK_72]",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "80": {
644
+ "content": "[MASK_73]",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "81": {
652
+ "content": "[MASK_74]",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "82": {
660
+ "content": "[MASK_75]",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "83": {
668
+ "content": "[MASK_76]",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "84": {
676
+ "content": "[MASK_77]",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "85": {
684
+ "content": "[MASK_78]",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "86": {
692
+ "content": "[MASK_79]",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "87": {
700
+ "content": "[MASK_80]",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "88": {
708
+ "content": "[MASK_81]",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "89": {
716
+ "content": "[MASK_82]",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "90": {
724
+ "content": "[MASK_83]",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "91": {
732
+ "content": "[MASK_84]",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "92": {
740
+ "content": "[MASK_85]",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "93": {
748
+ "content": "[MASK_86]",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "94": {
756
+ "content": "[MASK_87]",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "95": {
764
+ "content": "[MASK_88]",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "96": {
772
+ "content": "[MASK_89]",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "97": {
780
+ "content": "[MASK_90]",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "98": {
788
+ "content": "[MASK_91]",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "99": {
796
+ "content": "[MASK_92]",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "100": {
804
+ "content": "[MASK_93]",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "101": {
812
+ "content": "[MASK_94]",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "102": {
820
+ "content": "[MASK_95]",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "103": {
828
+ "content": "[MASK_96]",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "104": {
836
+ "content": "[MASK_97]",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "105": {
844
+ "content": "[MASK_98]",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "106": {
852
+ "content": "[MASK_99]",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ }
859
+ },
860
+ "bos_token": "[BOS]",
861
+ "clean_up_tokenization_spaces": true,
862
+ "cls_token": "[CLS]",
863
+ "eos_token": "[EOS]",
864
+ "mask_token": "[MASK]",
865
+ "model_max_length": 1000000000000000019884624838656,
866
+ "pad_token": "[PAD]",
867
+ "sep_token": "[SEP]",
868
+ "tokenizer_class": "PreTrainedTokenizerFast",
869
+ "unk_token": "[UNK]"
870
+ }