File size: 14,071 Bytes
ad6936c 9afb3ac ad6936c 9afb3ac ad6936c 4a3fe82 9afb3ac ad6936c 9afb3ac ad6936c c9d35bb 9afb3ac 31b35d3 c9d35bb 31b35d3 ad6936c 9afb3ac ad6936c 9afb3ac 31b35d3 c9d35bb 31b35d3 c9d35bb 31b35d3 c9d35bb ad6936c 9afb3ac ad6936c fe3d020 31b35d3 ad6936c 9afb3ac 31b35d3 ad6936c 9afb3ac ad6936c bde1673 ad6936c b094bc6 9afb3ac b094bc6 bde1673 b094bc6 ad6936c 9afb3ac ad6936c 9afb3ac ad6936c 9afb3ac ad6936c 4a3fe82 ad6936c b094bc6 3cc4c12 b094bc6 3cc4c12 b094bc6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
---
language:
- en
- ja
library_name: transformers
pipeline_tag: text-generation
license: llama2
model_type: llama
---
# Swallow
Our Swallow model has undergone continual pre-training from the [Llama 2 family](https://huggingface.co/meta-llama), primarily with the addition of Japanese language data. The tuned versions use supervised fine-tuning (SFT).
Links to other models can be found in the index.
# Model Release Updates
We are excited to share the release schedule for our latest models:
- **April 26, 2024**: Released version 0.1 of our enhanced instruction-tuned models: [Swallow-7b-instruct-v0.1](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-v0.1), [Swallow-13b-instruct-v0.1](https://huggingface.co/tokyotech-llm/Swallow-13b-instruct-v0.1), and [Swallow-70b-instruct-v0.1](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-v0.1) as preview versions.
- **March 2, 2024**: Released the [Swallow-7b-plus-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-plus-hf), a model trained with approximately twice as many Japanese tokens as [Swallow-7b-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-hf).
- **February 4, 2024**: Released the [Swallow-13b-NVE-hf](https://huggingface.co/tokyotech-llm/Swallow-13b-NVE-hf).
- **January 26, 2024**: Released the [Swallow-7b-NVE-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-NVE-hf), [Swallow-7b-NVE-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-NVE-instruct-hf), [Swallow-70b-NVE-hf](https://huggingface.co/tokyotech-llm/Swallow-70b-NVE-hf), and [Swallow-70b-NVE-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-70b-NVE-instruct-hf)
- **December 19, 2023**: Released the [Swallow-7b-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-hf), [Swallow-7b-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-hf), [Swallow-13b-hf](https://huggingface.co/tokyotech-llm/Swallow-13b-hf), [Swallow-13b-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-13b-instruct-hf), [Swallow-70b-hf](https://huggingface.co/tokyotech-llm/Swallow-70b-hf), and [Swallow-70b-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-hf).
## Swallow Model Index
|Model|Swallow-hf|Swallow-instruct-hf|Swallow-instruct-v0.1|
|---|---|---|---|
|7B| [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-hf)|[Link](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-v1.0)|
|7B-Plus| [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-plus-hf) | N/A | N/A |
|13B| [Link](https://huggingface.co/tokyotech-llm/Swallow-13b-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-13b-instruct-hf)| [Link](https://huggingface.co/tokyotech-llm/Swallow-13b-instruct-v1.0)|
|70B| [Link](https://huggingface.co/tokyotech-llm/Swallow-70b-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-hf)| [Link](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-v1.0)|
## Swallow Model Index NVE (No Vocabulary Expansion)
|Model|Swallow-NVE-hf|Swallow-NVE-instruct-hf|
|---|---|---|
|7B| [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-NVE-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-NVE-instruct-hf)|
|13B| [Link](https://huggingface.co/tokyotech-llm/Swallow-13b-NVE-hf) | N/A |
|70B| [Link](https://huggingface.co/tokyotech-llm/Swallow-70b-NVE-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-70b-NVE-instruct-hf)|
![logo](./logo.png)
This repository provides large language models developed by [TokyoTech-LLM](https://tokyotech-llm.github.io/).
## Model Details
* **Model type**: Please refer to LLaMA-2 technical report for details on the model architecture.
* **Language(s)**: Japanese English
* **Tokenizer**: This model employs a tokenizer that features a broadened vocabulary based on Japanese data. This allows for a more efficient representation of text using fewer tokens, leading to a notably faster inference process.
* **Contact**: swallow[at]nlp.c.titech.ac.jp
## Instruct Model Performance
### MT-Bench JA
#### Comparison to the past version
* NOTE that the models with the `v0.1` suffix are newer versions compared to their original counterparts with the `hf`.
* We report overall (i.e., average over scores of the first and second turns), first, and second turn scores.
##### Overall
|Model|Average|Writing|Roleplay|Reasoning|Math|Coding|Extraction|STEM|Humanities|
|---|---|---|---|---|---|---|---|---|---|
| Swallow-7b-instruct-v0.1 |0.3435|0.4450|0.4720|0.1853|0.1920|0.2204|0.3015|0.4594|0.4720|
| Swallow-7b-instruct-hf |0.1833|0.2205|0.1975|0.1593|0.1045|0.1282|0.2672|0.1908|0.1980|
| Swallow-13b-instruct-v0.1 |0.3669|0.4816|0.5562|0.2769|0.1020|0.1505|0.4179|0.4347|0.5150|
| Swallow-13b-instruct-hf |0.2004|0.1932|0.2552|0.1507|0.1184|0.1285|0.2641|0.2434|0.2500|
| Swallow-70b-instruct-v0.1 |0.4513|0.4822|0.5353|0.3497|0.3492|0.2668|0.5553|0.4955|0.5767|
| Swallow-70b-instruct-hf |0.3259|0.2925|0.4283|0.3447|0.1562|0.1856|0.5634|0.3315|0.3071|
##### First Turn
|Model|Average|Writing|Roleplay|Reasoning|Math|Coding|Extraction|STEM|Humanities|
|---|---|---|---|---|---|---|---|---|---|
| Swallow-7b-instruct-v0.1 |0.3829|0.4960|0.4800|0.2220|0.2820|0.2164|0.3220|0.5440|0.4980|
| Swallow-7b-instruct-hf |0.2216|0.2830|0.2150|0.1590|0.1080|0.1470|0.3542|0.2450|0.2650|
| Swallow-13b-instruct-v0.1 |0.3948|0.5400|0.5220|0.3020|0.1040|0.1760|0.5040|0.5180|0.4920|
| Swallow-13b-instruct-hf |0.2304|0.2460|0.2640|0.1610|0.1360|0.1330|0.3070|0.3010|0.2950|
| Swallow-70b-instruct-v0.1 |0.4849|0.5720|0.5020|0.4780|0.3680|0.2467|0.5400|0.5720|0.5960|
| Swallow-70b-instruct-hf |0.3631|0.3420|0.4007|0.4220|0.1580|0.2044|0.6120|0.4280|0.3360|
##### Second Turn
|Model|Average|Writing|Roleplay|Reasoning|Math|Coding|Extraction|STEM|Humanities|
|---|---|---|---|---|---|---|---|---|---|
| Swallow-7b-instruct-v0.1 |0.3059|0.3940|0.4640|0.1441|0.1000|0.2253|0.2811|0.3724|0.4449|
| Swallow-7b-instruct-hf |0.1432|0.1567|0.1798|0.1603|0.1010|0.1085|0.1767|0.1343|0.1295|
| Swallow-13b-instruct-v0.1 |0.3353|0.4213|0.5911|0.2516|0.1000|0.1244|0.3194|0.3473|0.5394|
| Swallow-13b-instruct-hf |0.1692|0.1364|0.2453|0.1401|0.1000|0.1237|0.2199|0.1850|0.2050|
| Swallow-70b-instruct-v0.1 |0.4179|0.3913|0.5689|0.2184|0.3280|0.2884|0.5711|0.4171|0.5562|
| Swallow-70b-instruct-hf |0.2872|0.2398|0.4564|0.2647|0.1540|0.1676|0.5118|0.2311|0.2762|
#### Comparison to the existing models
We only provide the overall score in this section.
##### 7B models
|Model|Average|Writing|Roleplay|Reasoning|Math|Coding|Extraction|STEM|Humanities|
|---|---|---|---|---|---|---|---|---|---|
| Swallow-7b-instruct-v0.1 |0.3435|0.4450|0.4720|0.1853|0.1920|0.2204|0.3015|0.4594|0.4720|
| ELYZA-japanese-Llama-2-7b-fast-instruct |0.2827|0.3289|0.3907|0.2424|0.1480|0.1584|0.3511|0.3053|0.3365|
| calm2-7b-chat |0.3204|0.4657|0.4898|0.1837|0.1005|0.1414|0.3927|0.3601|0.4293|
| calm2-7b-chat-dpo-experimental |0.3493|0.5312|0.5237|0.1857|0.1000|0.1813|0.3355|0.4320|0.5051|
| RakutenAI-7B-instruct |0.2994|0.3623|0.3711|0.3333|0.1763|0.1581|0.4215|0.2824|0.2901|
| RakutenAI-7B-chat |0.3667|0.4229|0.4644|0.3990|0.2161|0.2390|0.3416|0.3904|0.4601|
##### 13B models
|Model|Average|Writing|Roleplay|Reasoning|Math|Coding|Extraction|STEM|Humanities|
|---|---|---|---|---|---|---|---|---|---|
| Swallow-13b-instruct-v0.1 |0.3669|0.4816|0.5562|0.2769|0.1020|0.1505|0.4179|0.4347|0.5150|
| ELYZA-japanese-Llama-2-13b-instruct |0.3196|0.4400|0.4373|0.2098|0.2157|0.1572|0.3583|0.3243|0.4141|
| ELYZA-japanese-Llama-2-13b-fast-instruct |0.3042|0.3729|0.3930|0.1236|0.2492|0.1862|0.4360|0.3233|0.3496|
##### 70B models
|Model|Average|Writing|Roleplay|Reasoning|Math|Coding|Extraction|STEM|Humanities|
|---|---|---|---|---|---|---|---|---|---|
| Swallow-70b-instruct-v0.1 |0.4513|0.4822|0.5353|0.3497|0.3492|0.2668|0.5553|0.4955|0.5767|
| japanese-stablelm-instruct-beta-70b |0.3716|0.4179|0.3945|0.3656|0.2580|0.2186|0.4412|0.4663|0.4103|
## Evaluation Benchmarks
### MT-Bench JA
We used [Japanese MT-Bench](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_question) to assess the instruction-following capabilities of models.
We utilized the following settings:
- Implemantation: FastChat [Zheng+, 2023] (commit #e86e70d0)
- Question: [Nejumi LLM-Leaderboard NEO, mtbench_ja_question_v3](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_question/v3)
- Reference Answer: [Nejumi LLM-Leaderboard NEO, mtbench_ja_referenceanswer_v1](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_referenceanswer/v1)
- Prompt for Judge: [Nejumi LLM-Lederboard NEO, mtbench_ja_prompt_v1](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_prompt/v1)
- Judge: `gpt-4-1106-preview`
- Scoring: Absolute scale normalized to a 0-1 range, averaged over five runs.
## Usage
First install additional dependencies in [requirements.txt](./requirements.txt):
```sh
pip install -r requirements.txt
```
### Instruction format Ver0.1
This format must be adhered to strictly, as deviations may result in less optimal outputs from the model.
The template used to construct a prompt for the Instruct model is specified as follows:
```
<s>[INST] <<SYS>>\n{SYSTEM_PROMPT}\n<</SYS>>\n\n{USER_MESSAGE_1} [/INST] {BOT_MESSAGE_1}</s>[INST] {USER_MESSAGE_2} [/INST]
```
Please be aware that ``<s>`` and ``</s>`` are special tokens used for the beginning of string (BOS) and end of string (EOS), respectively, while [INST] and [/INST] are considered regular strings.
For the "{SYSTEM_PROMPT}" part, We recommend using "あなたは誠実で優秀な日本人のアシスタントです。"
For the "{USER_MESSAGE_1}" part, We recommend using {instruction}\n{input}
In other words, We recommend the following:
```
<s>[INST] <<SYS>>\nあなたは誠実で優秀な日本人のアシスタントです。\n<</SYS>>\n\n{instruction1}\n{input1} [/INST] {BOT_MESSAGE_1}</s>[INST] {instruction2}\n{input2} [/INST]
```
### Use the instruct model Ver0.1
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "tokyotech-llm/Swallow-70b-instruct-v0.1"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
device = "cuda"
messages = [
{"role": "system", "content": "あなたは誠実で優秀な日本人のアシスタントです。"},
{"role": "user", "content": "東京工業大学の主なキャンパスについて教えてください"}
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=128, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```
## Training Datasets
### Instruction Tuning Ver0.1
The following datasets were used for the instruction tuning.
- [OpenAssistant Conversations Dataset EN top-1 thread](https://huggingface.co/datasets/OpenAssistant/oasst2)
- [OpenAssistant Conversations Dataset](https://huggingface.co/datasets/llm-jp/oasst1-21k-ja) was used, where human utterances are included but the responses are not used. Instead, the responses were generated using the [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) model.
## Risks and Limitations
The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
## Acknowledgements
We thank Meta Research for releasing Llama 2 under an open license for others to build on.
Our project is supported by the [ABCI Large-scale Language Model Building Support Program](https://abci.ai/en/link/llm_support_program.html) of the National Institute of Advanced Industrial Science and Technology.
## License
Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.
## Authors
Here are the team members:
- From [Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members:
- [Naoaki Okazaki](https://www.chokkan.org/index.ja.html)
- [Sakae Mizuki](https://s-mizuki-nlp.github.io/)
- [Hiroki Iida](https://meshidenn.github.io/)
- [Mengsay Loem](https://loem-ms.github.io/)
- [Shota Hirai](https://huggingface.co/Kotemo428)
- [Kakeru Hattori](https://aya-se.vercel.app/)
- [Masanari Ohi](https://twitter.com/stjohn2007)
- From [YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members:
- [Rio Yokota](https://twitter.com/rioyokota)
- [Kazuki Fujii](https://twitter.com/okoge_kaz)
- [Taishi Nakamura](https://twitter.com/Setuna7777_2)
- [Takumi Okamoto](https://www.linkedin.com/in/takumi-okamoto)
- [Ishida Shigeki](https://www.wantedly.com/id/reborn27)
## How to cite
If you find our work helpful, please feel free to cite us.
```
@inproceedings{Fujii:COLM2024,
title={Continual Pre-Training for Cross-Lingual LLM Adaptation:
Enhancing Japanese Language Capabilities},
author={Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Hiroki
Iida and Masanari Ohi and Kakeru Hattori and Hirai Shota and Sakae
Mizuki and Rio Yokota and Naoaki Okazaki},
booktitle="Proceedings of the First Conference on Language Modeling",
series={COLM},
pages="(to appear)",
year="2024",
month=oct,
address={University of Pennsylvania, USA},
}
@inproceedings{Okazaki:COLM2024,
title={Building a Large Japanese Web Corpus for Large Language Models},
author={Naoaki Okazaki and Kakeru Hattori and Hirai Shota and Hiroki
Iida and Masanari Ohi and Kazuki Fujii and Taishi Nakamura and Mengsay
Loem and Rio Yokota and Sakae Mizuki},
booktitle="Proceedings of the First Conference on Language Modeling",
series={COLM},
pages="(to appear)",
year="2024",
month=oct,
address={University of Pennsylvania, USA},
}
``` |