evo-1-131k-base / tokenizer.json
pragaash's picture
Update byte tokenizer to be compatible with auto tokenizer and clean-up.
158e9d1 verified
raw
history blame
4.37 kB
# based on https://github.com/EleutherAI/gpt-neox/blob/main/megatron/tokenizer/tokenizer.py
from __future__ import annotations
import torch
import numpy as np
from os import PathLike
from typing import List, Tuple
from tokenizers import Tokenizer
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.tokenization_utils_base import BatchEncoding, TruncationStrategy
from transformers.utils.generic import TensorType, PaddingStrategy
EMPTY: str = ""
class ByteTokenizer(PreTrainedTokenizer):
"""UTF-8 Encoder."""
@classmethod
def from_pretrained(cls, model_id: str | PathLike, **kwargs) -> ByteTokenizer:
return cls(**kwargs, byte_level=True)
@property
def vocab_size(self) -> int:
return 512
@property
def byte_level(self) -> bool:
return self.init_kwargs.get('byte_level', True)
def get_vocab(self) -> Dict[str, int]:
return {chr(i): i for i in range(self.vocab_size)}
def __len__(self) -> int:
return self.vocab_size
def clamp(self, n: int) -> int:
return max(32, min(n, self.vocab_size))
def _tokenize(self, text: str, **kwargs) -> List[str]:
return list(text)
def byte_tokenize(self, text: str) -> np.ndarray:
return np.frombuffer(text.encode('utf-8'), dtype=np.uint8)
def _convert_token_to_id(self, token: str) -> int:
return self.clamp(ord(token))
def _convert_id_to_token(self, index: int) -> str:
return chr(self.clamp(index))
def convert_tokens_to_string(self, tokens: List[str]) -> str:
return EMPTY.join(tokens)
def _decode(self, token_ids: List[int], **kwargs) -> str:
indices = np.asarray(token_ids, dtype=np.uint8)
return (
indices.clip(min=32, max=self.vocab_size, out=indices)
.tobytes()
.decode('utf-8')
)
def _encode_plus(self, text: str, **kwargs) -> BatchEncoding:
first_ids = self.byte_tokenize(text).tolist()
return self.prepare_for_model(
first_ids,
pair_ids=None,
add_special_tokens=kwargs.get('add_special_tokens', False),
padding=kwargs.get('padding_strategy', PaddingStrategy.DO_NOT_PAD).value,
truncation=kwargs.get('truncation_strategy', TruncationStrategy.DO_NOT_TRUNCATE).value,
max_length=kwargs.get('max_length'),
stride=kwargs.get('stride', 0),
pad_to_multiple_of=kwargs.get('pad_to_multiple_of'),
return_tensors=kwargs.get('return_tensors'),
prepend_batch_axis=True,
return_attention_mask=kwargs.get('return_attention_mask'),
return_token_type_ids=kwargs.get('return_token_type_ids'),
return_overflowing_tokens=kwargs.get('return_overflowing_tokens', False),
return_special_tokens_mask=kwargs.get('return_special_tokens_mask', False),
return_length=kwargs.get('return_length', False),
verbose=kwargs.get('verbose', True),
)
def _batch_encode_plus(self, batch_text: List[str], **kwargs) -> BatchEncoding:
input_ids = [(self.byte_tokenize(text).tolist(), None) for text in batch_text]
return self._batch_prepare_for_model(
input_ids,
add_special_tokens=kwargs.get('add_special_tokens', False),
padding_strategy=kwargs.get('padding_strategy', PaddingStrategy.DO_NOT_PAD),
truncation_strategy=kwargs.get('truncation_strategy', TruncationStrategy.DO_NOT_TRUNCATE),
max_length=kwargs.get('max_length'),
stride=kwargs.get('stride', 0),
pad_to_multiple_of=kwargs.get('pad_to_multiple_of'),
return_attention_mask=kwargs.get('return_attention_mask'),
return_token_type_ids=kwargs.get('return_token_type_ids'),
return_overflowing_tokens=kwargs.get('return_overflowing_tokens', False),
return_special_tokens_mask=kwargs.get('return_special_tokens_mask', False),
return_length=kwargs.get('return_length', False),
return_tensors=kwargs.get('return_tensors'),
verbose=kwargs.get('verbose', True),
)
def _save_pretrained(
self, save_directory: str | PathLike, file_names: Tuple[str], **kwargs
) -> Tuple[str]:
return file_names