File size: 19,839 Bytes
27140ac cd7d86b 3668f68 27140ac cd7d86b 27140ac e84e201 27140ac 60eb4c7 870e350 27140ac 25b693b 27140ac 3b191f9 27140ac 3b191f9 27140ac 3b191f9 27140ac 2ec9f03 27140ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
# Copyright (c) Together
# This software is distributed under the terms of the Apache License, Version 2.0
# Author: Michael Poli
# Note: MP and PP utilities are removed for ease of use and editing.
import torch
import torch.nn as nn
import torch.nn.functional as F
from .cache import InferenceParams, RecurrentInferenceParams
from .engine import HyenaInferenceEngine
from .layers import ParallelGatedMLP, RMSNorm, VocabParallelEmbedding
from .utils import column_split, print_rank_0
try:
from flash_attn.modules.mha import MHA
except ImportError:
"flash_attn not installed"
try:
from .positional_embeddings import swap_mha_rope
except ImportError:
"could not import swap_mha_rope from positional_embeddings.py"
from flashfftconv import FlashDepthWiseConv1d
# dummy import to force huggingface to bundle the tokenizer
from .tokenizer import ByteTokenizer
class AttentionBlock(nn.Module):
def __init__(self, config, layer_idx) -> None:
super().__init__()
self.config = config
self.pre_norm, self.post_norm = RMSNorm(config), RMSNorm(config)
self.layer_idx = layer_idx
self.proj_groups = config.get("proj_groups", 1)
dtype = config.get("attn_block_dtype", torch.bfloat16)
mlp_dtype = config.get("mlp_dtype", torch.bfloat16)
self.num_attention_heads = config.num_attention_heads
self.hidden_size_per_attention_head = config.hidden_size // config.num_attention_heads
self.counter = 0
self.inner_mha_cls = MHA(
embed_dim=config.hidden_size,
num_heads=config.num_attention_heads,
num_heads_kv=config.num_attention_heads // self.proj_groups,
rotary_emb_dim=config.hidden_size // config.num_attention_heads,
qkv_proj_bias=config.get("qkv_proj_bias", True),
rotary_emb_base=config.get("rotary_emb_base", 10000),
causal=True,
layer_idx=layer_idx,
out_proj_bias=config.get("mha_out_proj_bias", True),
use_flash_attn=self.config.use_flash_attn,
).to(dtype=dtype)
# check if using interpolated rotary pos emb from config, and swap the rope emb
if config.get("use_interpolated_rotary_pos_emb", False):
swap_mha_rope(
mha=self.inner_mha_cls,
kwargs_new_rope={'scaling_factor': config.get("rotary_emb_scaling_factor", 1.)},
)
if self.config.get("smeared_gqa", False):
self.inner_mha_cls.num_heads_kv = self.inner_mha_cls.num_heads
self.inner_mha_cls.rotary_emb.register_buffer("inv_freq", self.inner_mha_cls.rotary_emb.inv_freq)
self.mlp = ParallelGatedMLP(config).to(dtype=mlp_dtype)
def forward(self, u, inference_params=None, padding_mask=None, *args, **kwargs):
if (
type(padding_mask) == torch.Tensor
): # workaround for masking bug in FA. This works because Wqkv does not have bias
# and attention scores will be also automatically zeroed.
u = u * padding_mask[..., None]
u = (
self.inner_mha_cls(
self.pre_norm(u),
inference_params=inference_params,
)
+ u
)
if type(padding_mask) == torch.Tensor: # guard against bias
u = u * padding_mask[..., None]
u = self.mlp(self.post_norm(u)) + u
return u, None
class ParallelHyenaFilter(nn.Module):
def __init__(self, config, layer_idx) -> None:
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.hyena_filter_groups = config.get("hyena_filter_groups", self.config.hidden_size)
self.use_flashfft = config.get("use_flashfft", False)
self.state_size = config.state_size
self.hidden_size = config.hidden_size
self.num_filters = config.num_filters
self.inference_mode = config.get("inference_mode", True)
self.counter = 0
self.column_split_hyena = config.get("column_split_hyena", True)
assert self.hidden_size % self.num_filters == 0 and self.num_filters <= self.hidden_size
self.D = nn.Parameter(torch.zeros(self.hidden_size))
# attention heads are not used except to split post short_filter
# projections in the same way as the checkpoint
self.num_attention_heads = config.num_attention_heads
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
# after preprocessing here we can save the new checkpoint
self.short_filter_length = config.short_filter_length
self.short_filter_weight = nn.Parameter(torch.randn(3 * config.hidden_size, 1, config.short_filter_length))
self.short_filter_bias = (
nn.Parameter(torch.randn(3 * config.hidden_size)) if config.short_filter_bias else None
)
self.engine = HyenaInferenceEngine(layer_idx=layer_idx)
self.use_flash_depthwise = config.get("use_flash_depthwise", False)
self.data_dtype = None
if self.use_flash_depthwise:
self.fir_fn = FlashDepthWiseConv1d(
channels=3 * self.hidden_size,
kernel_size=self.short_filter_length,
padding=self.short_filter_length - 1,
weights=self.short_filter_weight,
bias=self.short_filter_bias,
device=None,
dtype=self.config.get("depthwise_dtype", torch.bfloat16),
)
else:
self.fir_fn = F.conv1d
self.fftconv_fn = None
self.long_fir_threshold = config.get("long_fir_threshold", None)
if self.long_fir_threshold is not None:
assert self.use_flashfft is False, "long_fir_threshold not compatible with fused flashfft"
self.num_systems = self.hidden_size // self.hyena_filter_groups
poles = torch.randn(self.num_systems, self.state_size, 1, 2)
# TODO: bring over init from internals
poles[..., 0] = 1e-2 * torch.randn(self.num_systems, self.state_size, 1)
poles[..., 1] = 1e-3 * torch.randn(self.num_systems, self.state_size, 1)
self.poles = nn.Parameter(poles)
self.residues = nn.Parameter(torch.randn(self.num_systems, self.state_size, 1, 2))
self.h = None
def forward(self, u, inference_params=None, padding_mask=None, *args, **kwargs):
if inference_params is not None and self.layer_idx in inference_params.fir_state_dict.keys():
return self.sequential_forward(u, inference_params)
else:
return self.parallel_forward(u, inference_params, padding_mask)
def parallel_forward(self, u, inference_params=None, padding_mask=None):
L = u.shape[1]
z_pre, fir_state = self.engine.parallel_fir(
self.fir_fn,
u,
self.short_filter_weight,
self.short_filter_bias,
L,
fir_length=self.short_filter_length,
inference_params=inference_params,
padding_mask=padding_mask,
)
if inference_params:
inference_params.fir_state_dict[self.layer_idx] = fir_state
if self.h is None:
h, filter_dtype, poles, residues = self.compute_filter(L, u.device)
else:
h = self.h
filter_dtype = self.h.dtype
if self.hyena_filter_groups > 1:
h = h.repeat_interleave(self.hidden_size // self.hyena_filter_groups, 1)
# if inference_params is not None, we plan to perform generation:
# prefilling is handled by the engine.
dims = (
self.hidden_size,
self.num_attention_heads,
self.hidden_size_per_attention_head,
self.state_size,
self.hyena_filter_groups,
)
y = self.engine.parallel_iir(
z_pre,
h,
self.D,
L,
t=self.t,
poles=self.poles,
residues=self.residues,
dims=dims,
inference_params=inference_params,
layer_idx=self.layer_idx,
prefill_style=self.config.get("prefill_style", "fft"),
use_flashfft=self.use_flashfft,
fftconv_fn=self.fftconv_fn,
column_split_hyena=self.column_split_hyena,
long_fir_threshold=self.long_fir_threshold,
padding_mask=padding_mask,
)
return y, inference_params
def sequential_forward(self, u, inference_params):
if self.data_dtype is None:
self.data_dtype = u.dtype
if len(u.shape) > 2:
u = u[:, -1]
fir_state, iir_state = (
inference_params.fir_state_dict[self.layer_idx],
inference_params.state_dict[self.layer_idx],
)
z_pre, fir_state = self.engine.step_fir(
u, fir_state, weight=self.short_filter_weight, bias=self.short_filter_bias
)
x2, x1, v = (
column_split(z_pre, self.num_attention_heads, self.hidden_size_per_attention_head)
if self.column_split_hyena
else z_pre.split([self.hidden_size, self.hidden_size, self.hidden_size], dim=1)
)
y, iir_state = self.engine.step_iir(
x2,
x1,
v,
self.D,
self.residues,
self.poles,
iir_state,
iir_groups=self.hyena_filter_groups,
)
inference_params.fir_state_dict[self.layer_idx] = fir_state
inference_params.state_dict[self.layer_idx] = iir_state
y = y.to(dtype=self.data_dtype)
return y[:, None], inference_params
def update_time(self, L, device):
"""
Set [0, 1, ..., L-1] where L is the length of the current batch of inputs.
If L is greater than the length of the previous batch, then the time vector is
reinitialized. Otherwise, the time vector is truncated from cache.
"""
if not hasattr(self, "t"):
self.t = torch.arange(L, device=device)[None, None]
elif self.t.shape[-1] < L:
self.t = torch.arange(L, device=device)[None, None]
else:
self.t = self.t[..., :L]
def compute_filter(self, L, device):
self.update_time(L, device)
filter_dtype = torch.float32
residues, log_poles = (
torch.view_as_complex(self.residues.to(filter_dtype)),
torch.view_as_complex(self.poles.to(filter_dtype)).log(),
)
h = (residues * (log_poles * self.t).exp()).real.sum(1)[None]
return h, filter_dtype, log_poles, residues
class ParallelGatedConvBlock(nn.Module):
def __init__(self, config, layer_idx) -> None:
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.low_mem_mode = config.get("low_mem_mode", False)
dtype = config.get("hyena_block_dtype", torch.float32)
mlp_dtype = config.get("mlp_dtype", torch.bfloat16)
self.pre_norm, self.post_norm = RMSNorm(config).to(dtype=dtype), RMSNorm(config).to(dtype=dtype)
self.filter = ParallelHyenaFilter(config, layer_idx).to(dtype=dtype)
self.projections = nn.Linear(config.hidden_size, 3 * config.hidden_size)
self.out_filter_dense = nn.Linear(config.hidden_size, config.hidden_size).to(dtype)
self.mlp = ParallelGatedMLP(config).to(dtype=mlp_dtype)
self.proj_norm_fn = self.proj_norm
self.res_mlp_norm_fn = self.res_mlp_norm
if self.config.get("compile", False):
self.proj_norm_fn = torch.compile(self.proj_norm, fullgraph=True, dynamic=False, mode="reduce-overhead")
self.res_mlp_norm_fn = torch.compile(
self.res_mlp_norm, fullgraph=True, dynamic=False, mode="reduce-overhead"
)
def proj_norm(self, x):
return self.projections(self.pre_norm(x))
def res_mlp_norm(self, x):
return self.mlp(self.post_norm(x)) + x
def forward(self, u, inference_params=None, padding_mask=None, *args, **kwargs):
z = self.proj_norm_fn(u)
if type(padding_mask) == torch.Tensor: # guard against bias
z = z * padding_mask[..., None]
z, inference_params = self.filter(z, inference_params=inference_params, padding_mask=padding_mask)
self.filter_output = z
z_in = self.out_filter_dense(z) + u
if type(padding_mask) == torch.Tensor: # guard against bias
z_in = z_in * padding_mask[..., None]
y = self.res_mlp_norm_fn(z_in)
return y, inference_params
def get_block(config, layer_idx, flash_fft=None):
if layer_idx in config.attn_layer_idxs:
return AttentionBlock(config, layer_idx)
elif layer_idx in config.hyena_layer_idxs:
block = ParallelGatedConvBlock(config, layer_idx)
if config.get("use_flashfft", "False"):
block.filter.fftconv_fn = flash_fft
return block
else:
raise NotImplementedError
class StripedHyena(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.embedding_layer = VocabParallelEmbedding(config)
self.norm = RMSNorm(config) if config.get("final_norm", True) else None
self.unembed = self.embedding_layer if config.tie_embeddings else VocabParallelEmbedding(config)
if config.get("use_flashfft", "False"):
try:
from flashfftconv import FlashFFTConv
except:
raise ImportError
self.flash_fft = FlashFFTConv(2 * config.max_seqlen, dtype=torch.bfloat16)
else:
self.flash_fft = None
self.blocks = nn.ModuleList(
get_block(config, layer_idx, flash_fft=self.flash_fft) for layer_idx in range(config.num_layers)
)
self.gradient_checkpointing = False
self._gradient_checkpointing_func = None
def forward(self, x, inference_params_dict=None, padding_mask=None):
L = x.shape[1]
x = self.embedding_layer.embed(x)
if inference_params_dict is not None:
x, inference_params_dict_out = self.stateful_forward(
x,
inference_params_dict=inference_params_dict,
)
else:
x, inference_params_dict_out = self.stateless_forward(x, padding_mask=padding_mask)
x = self.norm(x)
x = self.unembed.unembed(x)
return x, inference_params_dict_out
def stateful_forward(self, x, inference_params_dict=None):
for block_idx, block in enumerate(self.blocks):
block_name = "mha" if block_idx in self.config.attn_layer_idxs else "hyena"
inference_params = inference_params_dict[block_name]
x, _ = block(x, inference_params=inference_params)
return x, inference_params_dict
def stateless_forward(self, x, padding_mask=None):
if type(padding_mask) == torch.Tensor:
x = x * padding_mask[..., None]
for _, block in enumerate(self.blocks):
if self.gradient_checkpointing and self.training:
x, _ = self._gradient_checkpointing_func(block.__call__, x, None, padding_mask)
else:
x, _ = block(x, inference_params=None, padding_mask=padding_mask)
return x, None
def initialize_inference_params(self):
print_rank_0("Initializing inference params...")
inference_params_dict = {
"mha": InferenceParams(
max_seqlen=self.config.get("max_seqlen", 8192),
max_batch_size=self.config.get("max_batch_size", 1),
seqlen_offset=0,
),
"hyena": RecurrentInferenceParams(
fir_filter_length=self.config.short_filter_length,
state_dim=self.config.state_size,
seqlen_offset=0,
),
}
return inference_params_dict
def precompute_filters(self, L, device):
for block_idx, block in enumerate(self.blocks):
if type(block) == ParallelGatedConvBlock:
if type(block.filter) == ParallelHyenaFilter:
L = block.filter.long_fir_threshold or L
print_rank_0(f"Precomputing filters, L={L}...")
filter_dtype = torch.float16 if L >= 2048 else torch.float32
block.filter._set_time(L, device)
residues, poles = (
torch.view_as_complex(block.filter.residues.to(torch.float16)),
torch.view_as_complex(block.filter.poles.to(torch.float16)),
)
block.filter.h = (residues * poles**block.filter.t).real.sum(1)[None]
block.filter.h = block.filter.h.to(dtype=filter_dtype)
def load_poles_residues(self, path):
"Load different poles and residues for each layer."
for block_idx, block in enumerate(self.blocks):
if type(block) == ParallelGatedConvBlock:
if type(block.filter) == ParallelHyenaFilter:
print(f"Loading poles and residues for block {block_idx}")
poles = torch.load(path + f"/approx_poles_{block_idx+1}.pt", map_location="cpu")
poles = torch.view_as_real(poles)
residues = torch.load(path + f"/approx_residues_{block_idx+1}.pt", map_location="cpu")
residues = torch.view_as_real(residues)
poles = poles.permute(1, 0, 2).unsqueeze(-2)
residues = residues.permute(1, 0, 2).unsqueeze(-2)
block.filter.poles = nn.Parameter(poles)
block.filter.residues = nn.Parameter(residues)
def to_bfloat16_except_poles_residues(self):
"""Convert all parameters to bfloat16 except for the poles and residues.
Particularly important for longer prompts.
"""
for k, p in self.named_parameters():
if "poles" not in k and "residues" not in k:
p.data = p.data.to(torch.bfloat16)
def load_from_split_converted_state_dict(self, path):
print("Loading from split converted state dict")
embedding_weight = torch.load(path + "/layer_00.pt")["word_embeddings.weight"]
self.embedding_layer.weight = nn.Parameter(embedding_weight.to(self.embedding_layer.weight.dtype))
print("Loading embedding weight ok")
if self.config.get("final_norm", False) is not None:
idx = len(self.blocks) + 1
final_norm_scale = torch.load(path + f"/layer_{idx:02d}.pt")["norm.scale"]
self.norm.scale = nn.Parameter(final_norm_scale.to(self.norm.scale.dtype))
print("loading final norm ok")
if not self.config.get("tie_embeddings", True):
idx = len(self.blocks) + 2
embedding_weight = torch.load(path + f"/layer_{idx:02d}.pt")["word_embeddings.weight"]
self.unembed.weight = nn.Parameter(embedding_weight.to(self.unembed.weight.dtype))
print("loading unembed weight ok")
for block_idx, block in enumerate(self.blocks):
print("loading block {}...".format(block_idx))
# strict = False if type(block) == ParallelGatedConvBlock else True
# some blocks (optionally) go through a round of conv distillation on some parameters
strict = True # safer to be strict and account for every layer
loaded_dict = torch.load(path + f"/layer_{block_idx + 1:02d}.pt")
block.load_state_dict(loaded_dict, strict=strict) |