tmnam20 commited on
Commit
d248e92
·
verified ·
1 Parent(s): 26d1783

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: mit
5
+ base_model: microsoft/mdeberta-v3-base
6
+ tags:
7
+ - generated_from_trainer
8
+ datasets:
9
+ - tmnam20/VieGLUE
10
+ metrics:
11
+ - accuracy
12
+ model-index:
13
+ - name: mdeberta-v3-base-qnli-10
14
+ results:
15
+ - task:
16
+ name: Text Classification
17
+ type: text-classification
18
+ dataset:
19
+ name: tmnam20/VieGLUE/QNLI
20
+ type: tmnam20/VieGLUE
21
+ config: qnli
22
+ split: validation
23
+ args: qnli
24
+ metrics:
25
+ - name: Accuracy
26
+ type: accuracy
27
+ value: 0.8984074684239429
28
+ ---
29
+
30
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
+ should probably proofread and complete it, then remove this comment. -->
32
+
33
+ # mdeberta-v3-base-qnli-10
34
+
35
+ This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/QNLI dataset.
36
+ It achieves the following results on the evaluation set:
37
+ - Loss: 0.2859
38
+ - Accuracy: 0.8984
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 2e-05
58
+ - train_batch_size: 32
59
+ - eval_batch_size: 16
60
+ - seed: 10
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - num_epochs: 3.0
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 0.3968 | 0.15 | 500 | 0.3264 | 0.8623 |
70
+ | 0.3826 | 0.31 | 1000 | 0.2996 | 0.8774 |
71
+ | 0.3478 | 0.46 | 1500 | 0.2894 | 0.8845 |
72
+ | 0.2959 | 0.61 | 2000 | 0.2745 | 0.8883 |
73
+ | 0.3228 | 0.76 | 2500 | 0.2640 | 0.8905 |
74
+ | 0.2899 | 0.92 | 3000 | 0.2723 | 0.8925 |
75
+ | 0.2269 | 1.07 | 3500 | 0.2850 | 0.8935 |
76
+ | 0.2614 | 1.22 | 4000 | 0.2607 | 0.8984 |
77
+ | 0.2508 | 1.37 | 4500 | 0.2831 | 0.8878 |
78
+ | 0.2563 | 1.53 | 5000 | 0.2556 | 0.8960 |
79
+ | 0.2485 | 1.68 | 5500 | 0.2618 | 0.9019 |
80
+ | 0.2373 | 1.83 | 6000 | 0.2600 | 0.8953 |
81
+ | 0.2361 | 1.99 | 6500 | 0.2545 | 0.9023 |
82
+ | 0.162 | 2.14 | 7000 | 0.3093 | 0.8997 |
83
+ | 0.2115 | 2.29 | 7500 | 0.2685 | 0.9010 |
84
+ | 0.176 | 2.44 | 8000 | 0.2966 | 0.8982 |
85
+ | 0.2047 | 2.6 | 8500 | 0.2767 | 0.8982 |
86
+ | 0.1831 | 2.75 | 9000 | 0.2918 | 0.8968 |
87
+ | 0.1818 | 2.9 | 9500 | 0.2818 | 0.8979 |
88
+
89
+
90
+ ### Framework versions
91
+
92
+ - Transformers 4.35.2
93
+ - Pytorch 2.2.0.dev20231203+cu121
94
+ - Datasets 2.15.0
95
+ - Tokenizers 0.15.0