tmberooney commited on
Commit
7436913
·
1 Parent(s): a7859a2

Upload model

Browse files
Files changed (3) hide show
  1. README.md +180 -49
  2. adapter_config.json +3 -3
  3. adapter_model.safetensors +2 -2
README.md CHANGED
@@ -1,73 +1,204 @@
1
  ---
2
  library_name: peft
3
- base_model: daryl149/llama-2-7b-chat-hf
4
- license: apache-2.0
5
- datasets:
6
- - sid6i7/patient-doctor
7
- pipeline_tag: conversational
8
- tags:
9
- - medical
10
  ---
11
 
12
- Model Card for "medllama"
13
- ---------------------------
14
 
15
- **Model Name:** medllama
16
 
17
- **Library Name:** peft (Python library for Efficient Tuning)
18
 
19
- **Base Model:** daryl149/llama-2-7b-chat-hf (A pretrained language model with 7 billion parameters, fine-tuned for chat applications.)
20
 
21
- **License:** Apache-2.0 License
22
 
23
- ### Usage
24
- For usage, use this code block, with GPU recommended
25
- ```
26
- from transformers import AutoModelForCausalLM, AutoTokenizer
27
 
28
- config = PeftConfig.from_pretrained("tmberooney/medllama")
29
- model = AutoModelForCausalLM.from_pretrained("daryl149/llama-2-7b-chat-hf", device_map="auto")
30
- model = PeftModel.from_pretrained(model, "tmberooney/medllama")
31
- tokenizer=AutoTokenizer.from_pretrained(config.base_model_name_or_path)
32
- ```
33
 
34
- ### Intended Use
35
- ---------------
36
 
37
- The `medllama` model is a fine-tuned version of the base model specifically adapted for medical conversations between patients and doctors. This model can be used in various healthcare settings to assist professionals during their interactions with patients, providing relevant suggestions or answering questions related to health conditions, treatments, medications, and other medical topics. The goal is to improve communication efficiency and ensure accurate information exchange while maintaining privacy and confidentiality standards.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
  ### Training Data
40
- --------------
41
 
42
- This model was trained using data from the `sid6i7/patient-doctor` dataset, which contains deidentified medical dialogues between patients and physicians covering diverse medical domains like internal medicine, pediatrics, neurology, psychiatry, and more. These conversations are designed to simulate real-life clinical scenarios, allowing the model to understand context, generate responses that reflect appropriate levels of empathy, and provide reliable medical information based on user queries.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
- ### Evaluation Results
45
- --------------------
46
 
47
- Evaluations were conducted on several benchmark datasets tailored towards measuring performance in medical dialogue systems. Metrics such as perplexity, BLEU score, ROUGE score, and F1 score have been reported to assess the quality and relevance of generated responses compared to reference answers. Detailed evaluation results will be provided separately upon request.
48
 
49
- ### Ethical Considerations
50
- -------------------------
51
 
52
- To maintain ethical guidelines when deploying this model, it's crucial to consider the following aspects:
53
 
54
- * **Data Privacy**: Ensure patient data remains anonymous and protected throughout all stages of development and deployment. Obtain informed consent before utilizing any identifiable personal health information.
55
- * **Medical Accuracy**: Regularly review and update the model based on new research findings and evidence-based practices. Always encourage users to consult licensed healthcare providers regarding specific concerns or diagnoses.
56
- * **Bias Mitigation**: Continuously monitor and address potential biases within training data and model outputs to avoid discrimination against certain demographics. Strive for inclusivity by incorporating diverse sources of information during development.
57
- * **User Awareness**: Inform end-users about limitations, intended uses, and possible risks associated with interacting with an AI system rather than a human expert. Clearly outline expectations for accuracy, response times, and available features.
58
 
59
- For further details on these guidelines, please refer to our project documentation.
60
 
61
- ### Citation Information
62
- ----------------------
63
 
64
- When citing this work, kindly include the original base model along with your customization:
65
 
66
- ```
67
- @misc{daryl149_2023_llama_2,
68
- author = {Daryl Lu},
69
- title = {{LLaMA-2}: Scaling Vision-Language Models},
70
- howpublished = {\url{https://github.com/facebookresearch/llama}},
71
-
72
- }
73
- ```
 
1
  ---
2
  library_name: peft
3
+ base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
 
 
 
 
 
 
4
  ---
5
 
6
+ # Model Card for Model ID
 
7
 
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
+ ## Model Details
13
 
14
+ ### Model Description
 
 
 
15
 
16
+ <!-- Provide a longer summary of what this model is. -->
 
 
 
 
17
 
 
 
18
 
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
 
78
  ### Training Data
 
79
 
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
 
189
+ ## More Information [optional]
 
190
 
191
+ [More Information Needed]
192
 
193
+ ## Model Card Authors [optional]
 
194
 
195
+ [More Information Needed]
196
 
197
+ ## Model Card Contact
 
 
 
198
 
199
+ [More Information Needed]
200
 
 
 
201
 
202
+ ### Framework versions
203
 
204
+ - PEFT 0.7.1
 
 
 
 
 
 
 
adapter_config.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
  "alpha_pattern": {},
3
  "auto_mapping": null,
4
- "base_model_name_or_path": "daryl149/llama-2-7b-chat-hf",
5
  "bias": "none",
6
  "fan_in_fan_out": false,
7
  "inference_mode": true,
@@ -19,8 +19,8 @@
19
  "rank_pattern": {},
20
  "revision": null,
21
  "target_modules": [
22
- "q_proj",
23
- "v_proj"
24
  ],
25
  "task_type": "CAUSAL_LM"
26
  }
 
1
  {
2
  "alpha_pattern": {},
3
  "auto_mapping": null,
4
+ "base_model_name_or_path": "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
5
  "bias": "none",
6
  "fan_in_fan_out": false,
7
  "inference_mode": true,
 
19
  "rank_pattern": {},
20
  "revision": null,
21
  "target_modules": [
22
+ "v_proj",
23
+ "q_proj"
24
  ],
25
  "task_type": "CAUSAL_LM"
26
  }
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e5f83b0cb3e3e5fd16901bedd85cd90d1beb36a6d83309946d81f0fc29f6784d
3
- size 33571624
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4142640feb2f57f1e1c6f6eadffb520049edeaa6107f3741d0d1bef716253252
3
+ size 9022864