--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for tf_efficientnet_b5.ap_in1k A EfficientNet image classification model. Trained on ImageNet-1k with AdvProp (adversarial examples) in Tensorflow by paper authors, ported to PyTorch by Ross Wightman. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 30.4 - GMACs: 10.5 - Activations (M): 98.9 - Image size: 456 x 456 - **Papers:** - EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks: https://arxiv.org/abs/1905.11946 - Adversarial Examples Improve Image Recognition: https://arxiv.org/abs/1911.09665 - **Dataset:** ImageNet-1k - **Original:** https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('tf_efficientnet_b5.ap_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'tf_efficientnet_b5.ap_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 24, 228, 228]) # torch.Size([1, 40, 114, 114]) # torch.Size([1, 64, 57, 57]) # torch.Size([1, 176, 29, 29]) # torch.Size([1, 512, 15, 15]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'tf_efficientnet_b5.ap_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 2048, 15, 15) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @inproceedings{tan2019efficientnet, title={Efficientnet: Rethinking model scaling for convolutional neural networks}, author={Tan, Mingxing and Le, Quoc}, booktitle={International conference on machine learning}, pages={6105--6114}, year={2019}, organization={PMLR} } ``` ```bibtex @article{Xie2019AdversarialEI, title={Adversarial Examples Improve Image Recognition}, author={Cihang Xie and Mingxing Tan and Boqing Gong and Jiang Wang and Alan Loddon Yuille and Quoc V. Le}, journal={2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2019}, pages={816-825} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ```