timm
/

Image Classification
timm
PyTorch
Safetensors
Transformers
rwightman HF staff commited on
Commit
3413bf9
·
1 Parent(s): c2ce926
Files changed (4) hide show
  1. README.md +150 -0
  2. config.json +37 -0
  3. model.safetensors +3 -0
  4. pytorch_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - image-classification
4
+ - timm
5
+ library_tag: timm
6
+ license: mit
7
+ datasets:
8
+ - imagenet-1k
9
+ ---
10
+ # Model card for swin_s3_tiny_224.ms_in1k
11
+
12
+ ## Model Details
13
+ - **Model Type:** Image classification / feature backbone
14
+ - **Model Stats:**
15
+ - Params (M): 28.3
16
+ - GMACs: 4.6
17
+ - Activations (M): 19.1
18
+ - Image size: 224 x 224
19
+ - **Papers:**
20
+ - AutoFormerV2: https://arxiv.org/abs/2111.1472
21
+ - Swin Transformer: Hierarchical Vision Transformer using Shifted Windows: https://arxiv.org/abs/2103.14030
22
+ - **Original:** https://github.com/microsoft/Cream/tree/main/AutoFormerV2
23
+ - **Dataset:** ImageNet-1k
24
+
25
+ ## Model Usage
26
+ ### Image Classification
27
+ ```python
28
+ from urllib.request import urlopen
29
+ from PIL import Image
30
+ import timm
31
+
32
+ img = Image.open(urlopen(
33
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
34
+ ))
35
+
36
+ model = timm.create_model('swin_s3_tiny_224.ms_in1k', pretrained=True)
37
+ model = model.eval()
38
+
39
+ # get model specific transforms (normalization, resize)
40
+ data_config = timm.data.resolve_model_data_config(model)
41
+ transforms = timm.data.create_transform(**data_config, is_training=False)
42
+
43
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
44
+
45
+ top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
46
+ ```
47
+
48
+ ### Feature Map Extraction
49
+ ```python
50
+ from urllib.request import urlopen
51
+ from PIL import Image
52
+ import timm
53
+
54
+ img = Image.open(urlopen(
55
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
56
+ ))
57
+
58
+ model = timm.create_model(
59
+ 'swin_s3_tiny_224.ms_in1k',
60
+ pretrained=True,
61
+ features_only=True,
62
+ )
63
+ model = model.eval()
64
+
65
+ # get model specific transforms (normalization, resize)
66
+ data_config = timm.data.resolve_model_data_config(model)
67
+ transforms = timm.data.create_transform(**data_config, is_training=False)
68
+
69
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
70
+
71
+ for o in output:
72
+ # print shape of each feature map in output
73
+ # e.g. for swin_base_patch4_window7_224 (NHWC output)
74
+ # torch.Size([1, 56, 56, 128])
75
+ # torch.Size([1, 28, 28, 256])
76
+ # torch.Size([1, 14, 14, 512])
77
+ # torch.Size([1, 7, 7, 1024])
78
+ # e.g. for swinv2_cr_small_ns_224 (NCHW output)
79
+ # torch.Size([1, 96, 56, 56])
80
+ # torch.Size([1, 192, 28, 28])
81
+ # torch.Size([1, 384, 14, 14])
82
+ # torch.Size([1, 768, 7, 7])
83
+ print(o.shape)
84
+ ```
85
+
86
+ ### Image Embeddings
87
+ ```python
88
+ from urllib.request import urlopen
89
+ from PIL import Image
90
+ import timm
91
+
92
+ img = Image.open(urlopen(
93
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
94
+ ))
95
+
96
+ model = timm.create_model(
97
+ 'swin_s3_tiny_224.ms_in1k',
98
+ pretrained=True,
99
+ num_classes=0, # remove classifier nn.Linear
100
+ )
101
+ model = model.eval()
102
+
103
+ # get model specific transforms (normalization, resize)
104
+ data_config = timm.data.resolve_model_data_config(model)
105
+ transforms = timm.data.create_transform(**data_config, is_training=False)
106
+
107
+ output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
108
+
109
+ # or equivalently (without needing to set num_classes=0)
110
+
111
+ output = model.forward_features(transforms(img).unsqueeze(0))
112
+ # output is unpooled (ie.e a (batch_size, H, W, num_features) tensor for swin / swinv2
113
+ # or (batch_size, num_features, H, W) for swinv2_cr
114
+
115
+ output = model.forward_head(output, pre_logits=True)
116
+ # output is (batch_size, num_features) tensor
117
+ ```
118
+
119
+ ## Model Comparison
120
+ Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
121
+
122
+
123
+ ## Citation
124
+ ```bibtex
125
+ @article{S3,
126
+ title={Searching the Search Space of Vision Transformer},
127
+ author={Minghao, Chen and Kan, Wu and Bolin, Ni and Houwen, Peng and Bei, Liu and Jianlong, Fu and Hongyang, Chao and Haibin, Ling},
128
+ booktitle={Conference and Workshop on Neural Information Processing Systems (NeurIPS)},
129
+ year={2021}
130
+ }
131
+ ```
132
+ ```bibtex
133
+ @inproceedings{liu2021Swin,
134
+ title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
135
+ author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
136
+ booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
137
+ year={2021}
138
+ }
139
+ ```
140
+ ```bibtex
141
+ @misc{rw2019timm,
142
+ author = {Ross Wightman},
143
+ title = {PyTorch Image Models},
144
+ year = {2019},
145
+ publisher = {GitHub},
146
+ journal = {GitHub repository},
147
+ doi = {10.5281/zenodo.4414861},
148
+ howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
149
+ }
150
+ ```
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architecture": "swin_s3_tiny_224",
3
+ "num_classes": 1000,
4
+ "num_features": 768,
5
+ "global_pool": "avg",
6
+ "pretrained_cfg": {
7
+ "tag": "ms_in1k",
8
+ "custom_load": false,
9
+ "input_size": [
10
+ 3,
11
+ 224,
12
+ 224
13
+ ],
14
+ "fixed_input_size": true,
15
+ "interpolation": "bicubic",
16
+ "crop_pct": 0.9,
17
+ "crop_mode": "center",
18
+ "mean": [
19
+ 0.485,
20
+ 0.456,
21
+ 0.406
22
+ ],
23
+ "std": [
24
+ 0.229,
25
+ 0.224,
26
+ 0.225
27
+ ],
28
+ "num_classes": 1000,
29
+ "pool_size": [
30
+ 7,
31
+ 7
32
+ ],
33
+ "first_conv": "patch_embed.proj",
34
+ "classifier": "head.fc",
35
+ "license": "mit"
36
+ }
37
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a14bb71b09ea698968ad9c87ad41e75e7a8718fa8e057e8089094ddfd832fa3
3
+ size 116061224
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b12969f0c97d3d636a61cf6f66b825326ae5a1b5fc490866ab29c48cc14aee7a
3
+ size 116110841