--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k - unknown-6m --- # Model card for nextvit_small.bd_ssld_6m_in1k_384 A Next-ViT image classification model. Trained by paper authors on an unknown 6M sample dataset and ImageNet-1k using SSLD distillation. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 31.8 - GMACs: 17.0 - Activations (M): 51.7 - Image size: 384 x 384 - **Pretrain Dataset:** Unknown-6M - **Dataset:** ImageNet-1k - **Papers:** - Next-ViT: Next Generation Vision Transformer for Efficient Deployment in Realistic Industrial Scenarios: https://arxiv.org/abs/2207.05501 - **Original:** https://github.com/bytedance/Next-ViT ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('nextvit_small.bd_ssld_6m_in1k_384', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'nextvit_small.bd_ssld_6m_in1k_384', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 96, 96, 96]) # torch.Size([1, 256, 48, 48]) # torch.Size([1, 512, 24, 24]) # torch.Size([1, 1024, 12, 12]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'nextvit_small.bd_ssld_6m_in1k_384', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 1024, 12, 12) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison ### By Top-1 |model |top1 |top1_err|top5 |top5_err|param_count| |---------------------------------|------|--------|------|--------|-----------| |nextvit_large.bd_ssld_6m_in1k_384|86.542|13.458 |98.142|1.858 |57.87 | |nextvit_base.bd_ssld_6m_in1k_384 |86.352|13.648 |98.04 |1.96 |44.82 | |nextvit_small.bd_ssld_6m_in1k_384|85.964|14.036 |97.908|2.092 |31.76 | |nextvit_large.bd_ssld_6m_in1k |85.48 |14.52 |97.696|2.304 |57.87 | |nextvit_base.bd_ssld_6m_in1k |85.186|14.814 |97.59 |2.41 |44.82 | |nextvit_large.bd_in1k_384 |84.924|15.076 |97.294|2.706 |57.87 | |nextvit_small.bd_ssld_6m_in1k |84.862|15.138 |97.382|2.618 |31.76 | |nextvit_base.bd_in1k_384 |84.706|15.294 |97.224|2.776 |44.82 | |nextvit_small.bd_in1k_384 |84.022|15.978 |96.99 |3.01 |31.76 | |nextvit_large.bd_in1k |83.626|16.374 |96.694|3.306 |57.87 | |nextvit_base.bd_in1k |83.472|16.528 |96.656|3.344 |44.82 | |nextvit_small.bd_in1k |82.61 |17.39 |96.226|3.774 |31.76 | ## Citation ```bibtex @article{li2022next, title={Next-ViT: Next Generation Vision Transformer for Efficient Deployment in Realistic Industrial Scenarios}, author={Li, Jiashi and Xia, Xin and Li, Wei and Li, Huixia and Wang, Xing and Xiao, Xuefeng and Wang, Rui and Zheng, Min and Pan, Xin}, journal={arXiv preprint arXiv:2207.05501}, year={2022} } ```