File size: 1,877 Bytes
405a7ed 1e0527c 213177e 405a7ed f18fb31 405a7ed 1e0527c 405a7ed f4558db 405a7ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: apache-2.0
base_model: google/flan-t5-base
tags:
- generated_from_keras_callback
model-index:
- name: t5-base-mmlu-qa2a
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# t5-base-mmlu-qa2a
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1856
- Validation Loss: 0.2587
- Epoch: 1
<pre>{'eval_loss': 2.8363170623779297,
'eval_bleu': 8.346157741863188,
'eval_rouge1': 19.52,
'eval_rouge2': 6.55,
'eval_rougeL': 18.19,
'eval_rougeLsum': 18.19,
'eval_exact': 0.0019177661859466095,
'eval_runtime': 278.5068,
'eval_samples_per_second': 46.807,
'eval_steps_per_second': 1.465}</pre>
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adafactor', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'beta_2_decay': -0.8, 'epsilon_1': 1e-30, 'epsilon_2': 0.001, 'clip_threshold': 1.0, 'relative_step': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.3922 | 0.2555 | 0 |
| 0.1856 | 0.2587 | 1 |
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.14.3
- Tokenizers 0.13.3
|