ybelkada commited on
Commit
f42ec5a
·
verified ·
1 Parent(s): bab14db

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -153
README.md CHANGED
@@ -1,62 +1,37 @@
1
  ---
2
- language:
3
  - en
4
- - fr
5
- - pt
6
- - es
7
- - multilingual
8
-
9
  tags:
10
  - falcon3
11
- - text-generation
12
-
13
- license: apache-2.0
14
  ---
15
 
16
- # Model Card for FLAN-T5 large
17
-
18
- <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/flan2_architecture.jpg"
19
- alt="drawing" width="600"/>
20
 
21
  # Table of Contents
22
 
23
  0. [TL;DR](#TL;DR)
24
  1. [Model Details](#model-details)
25
  2. [Usage](#usage)
26
- 3. [Uses](#uses)
27
- 4. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
28
- 5. [Training Details](#training-details)
29
- 6. [Evaluation](#evaluation)
30
- 7. [Environmental Impact](#environmental-impact)
31
- 8. [Citation](#citation)
32
- 9. [Model Card Authors](#model-card-authors)
33
 
34
- # TL;DR
35
 
36
- If you already know T5, FLAN-T5 is just better at everything. For the same number of parameters, these models have been fine-tuned on more than 1000 additional tasks covering also more languages.
37
- As mentioned in the first few lines of the abstract :
38
- > Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints,1 which achieve strong few-shot performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained language models.
39
-
40
- **Disclaimer**: Content from **this** model card has been written by the Hugging Face team, and parts of it were copy pasted from the [T5 model card](https://huggingface.co/t5-large).
41
 
42
  # Model Details
43
 
44
  ## Model Description
45
 
 
 
 
 
 
46
 
47
- - **Model type:** Language model
48
- - **Language(s) (NLP):** English, Spanish, Japanese, Persian, Hindi, French, Chinese, Bengali, Gujarati, German, Telugu, Italian, Arabic, Polish, Tamil, Marathi, Malayalam, Oriya, Panjabi, Portuguese, Urdu, Galician, Hebrew, Korean, Catalan, Thai, Dutch, Indonesian, Vietnamese, Bulgarian, Filipino, Central Khmer, Lao, Turkish, Russian, Croatian, Swedish, Yoruba, Kurdish, Burmese, Malay, Czech, Finnish, Somali, Tagalog, Swahili, Sinhala, Kannada, Zhuang, Igbo, Xhosa, Romanian, Haitian, Estonian, Slovak, Lithuanian, Greek, Nepali, Assamese, Norwegian
49
- - **License:** Apache 2.0
50
- - **Related Models:** [All FLAN-T5 Checkpoints](https://huggingface.co/models?search=flan-t5)
51
- - **Original Checkpoints:** [All Original FLAN-T5 Checkpoints](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints)
52
- - **Resources for more information:**
53
- - [Research paper](https://arxiv.org/pdf/2210.11416.pdf)
54
- - [GitHub Repo](https://github.com/google-research/t5x)
55
- - [Hugging Face FLAN-T5 Docs (Similar to T5) ](https://huggingface.co/docs/transformers/model_doc/t5)
56
 
57
  # Usage
58
 
59
- Find below some example scripts on how to use the model in `transformers`:
60
 
61
  ## Using the Pytorch model
62
 
@@ -66,13 +41,12 @@ Find below some example scripts on how to use the model in `transformers`:
66
  <summary> Click to expand </summary>
67
 
68
  ```python
 
69
 
70
- from transformers import T5Tokenizer, T5ForConditionalGeneration
71
-
72
- tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")
73
- model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
74
 
75
- input_text = "translate English to German: How old are you?"
76
  input_ids = tokenizer(input_text, return_tensors="pt").input_ids
77
 
78
  outputs = model.generate(input_ids)
@@ -88,12 +62,12 @@ print(tokenizer.decode(outputs[0]))
88
 
89
  ```python
90
  # pip install accelerate
91
- from transformers import T5Tokenizer, T5ForConditionalGeneration
92
 
93
- tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")
94
- model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large", device_map="auto")
95
 
96
- input_text = "translate English to German: How old are you?"
97
  input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
98
 
99
  outputs = model.generate(input_ids)
@@ -102,43 +76,21 @@ print(tokenizer.decode(outputs[0]))
102
 
103
  </details>
104
 
105
- ### Running the model on a GPU using different precisions
106
-
107
- #### FP16
108
 
109
  <details>
110
  <summary> Click to expand </summary>
111
 
112
  ```python
113
- # pip install accelerate
114
  import torch
115
- from transformers import T5Tokenizer, T5ForConditionalGeneration
116
 
117
- tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")
118
- model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large", device_map="auto", torch_dtype=torch.float16)
119
 
120
- input_text = "translate English to German: How old are you?"
121
- input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
122
 
123
- outputs = model.generate(input_ids)
124
- print(tokenizer.decode(outputs[0]))
125
- ```
126
-
127
- </details>
128
-
129
- #### INT8
130
-
131
- <details>
132
- <summary> Click to expand </summary>
133
-
134
- ```python
135
- # pip install bitsandbytes accelerate
136
- from transformers import T5Tokenizer, T5ForConditionalGeneration
137
-
138
- tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")
139
- model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large", device_map="auto", load_in_8bit=True)
140
-
141
- input_text = "translate English to German: How old are you?"
142
  input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
143
 
144
  outputs = model.generate(input_ids)
@@ -147,98 +99,27 @@ print(tokenizer.decode(outputs[0]))
147
 
148
  </details>
149
 
150
- # Uses
151
-
152
- ## Direct Use and Downstream Use
153
-
154
- The authors write in [the original paper's model card](https://arxiv.org/pdf/2210.11416.pdf) that:
155
-
156
- > The primary use is research on language models, including: research on zero-shot NLP tasks and in-context few-shot learning NLP tasks, such as reasoning, and question answering; advancing fairness and safety research, and understanding limitations of current large language models
157
-
158
- See the [research paper](https://arxiv.org/pdf/2210.11416.pdf) for further details.
159
-
160
- ## Out-of-Scope Use
161
-
162
- More information needed.
163
-
164
- # Bias, Risks, and Limitations
165
-
166
- The information below in this section are copied from the model's [official model card](https://arxiv.org/pdf/2210.11416.pdf):
167
-
168
- > Language models, including Flan-T5, can potentially be used for language generation in a harmful way, according to Rae et al. (2021). Flan-T5 should not be used directly in any application, without a prior assessment of safety and fairness concerns specific to the application.
169
-
170
- ## Ethical considerations and risks
171
-
172
- > Flan-T5 is fine-tuned on a large corpus of text data that was not filtered for explicit content or assessed for existing biases. As a result the model itself is potentially vulnerable to generating equivalently inappropriate content or replicating inherent biases in the underlying data.
173
-
174
- ## Known Limitations
175
-
176
- > Flan-T5 has not been tested in real world applications.
177
-
178
- ## Sensitive Use:
179
-
180
- > Flan-T5 should not be applied for any unacceptable use cases, e.g., generation of abusive speech.
181
-
182
  # Training Details
183
 
184
  ## Training Data
185
 
186
- The model was trained on a mixture of tasks, that includes the tasks described in the table below (from the original paper, figure 2):
187
-
188
- ![table.png](https://s3.amazonaws.com/moonup/production/uploads/1666363265279-62441d1d9fdefb55a0b7d12c.png)
189
-
190
-
191
  ## Training Procedure
192
 
193
- According to the model card from the [original paper](https://arxiv.org/pdf/2210.11416.pdf):
194
-
195
- > These models are based on pretrained T5 (Raffel et al., 2020) and fine-tuned with instructions for better zero-shot and few-shot performance. There is one fine-tuned Flan model per T5 model size.
196
 
197
- The model has been trained on TPU v3 or TPU v4 pods, using [`t5x`](https://github.com/google-research/t5x) codebase together with [`jax`](https://github.com/google/jax).
 
 
 
 
 
 
198
 
199
 
200
  # Evaluation
201
 
202
- ## Testing Data, Factors & Metrics
203
 
204
- The authors evaluated the model on various tasks covering several languages (1836 in total). See the table below for some quantitative evaluation:
205
- ![image.png](https://s3.amazonaws.com/moonup/production/uploads/1668072995230-62441d1d9fdefb55a0b7d12c.png)
206
- For full details, please check the [research paper](https://arxiv.org/pdf/2210.11416.pdf).
207
-
208
- ## Results
209
-
210
- For full results for FLAN-T5-Large, see the [research paper](https://arxiv.org/pdf/2210.11416.pdf), Table 3.
211
-
212
- # Environmental Impact
213
-
214
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
215
-
216
- - **Hardware Type:** Google Cloud TPU Pods - TPU v3 or TPU v4 | Number of chips ≥ 4.
217
- - **Hours used:** More information needed
218
- - **Cloud Provider:** GCP
219
- - **Compute Region:** More information needed
220
- - **Carbon Emitted:** More information needed
221
 
222
  # Citation
223
 
224
- **BibTeX:**
225
-
226
- ```bibtex
227
- @misc{https://doi.org/10.48550/arxiv.2210.11416,
228
- doi = {10.48550/ARXIV.2210.11416},
229
-
230
- url = {https://arxiv.org/abs/2210.11416},
231
-
232
- author = {Chung, Hyung Won and Hou, Le and Longpre, Shayne and Zoph, Barret and Tay, Yi and Fedus, William and Li, Eric and Wang, Xuezhi and Dehghani, Mostafa and Brahma, Siddhartha and Webson, Albert and Gu, Shixiang Shane and Dai, Zhuyun and Suzgun, Mirac and Chen, Xinyun and Chowdhery, Aakanksha and Narang, Sharan and Mishra, Gaurav and Yu, Adams and Zhao, Vincent and Huang, Yanping and Dai, Andrew and Yu, Hongkun and Petrov, Slav and Chi, Ed H. and Dean, Jeff and Devlin, Jacob and Roberts, Adam and Zhou, Denny and Le, Quoc V. and Wei, Jason},
233
-
234
- keywords = {Machine Learning (cs.LG), Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
235
-
236
- title = {Scaling Instruction-Finetuned Language Models},
237
-
238
- publisher = {arXiv},
239
-
240
- year = {2022},
241
-
242
- copyright = {Creative Commons Attribution 4.0 International}
243
- }
244
- ```
 
1
  ---
2
+ language:
3
  - en
 
 
 
 
 
4
  tags:
5
  - falcon3
 
 
 
6
  ---
7
 
 
 
 
 
8
 
9
  # Table of Contents
10
 
11
  0. [TL;DR](#TL;DR)
12
  1. [Model Details](#model-details)
13
  2. [Usage](#usage)
14
+ 3. [Training Details](#training-details)
15
+ 4. [Evaluation](#evaluation)
 
 
 
 
 
16
 
 
17
 
18
+ # TL;DR
 
 
 
 
19
 
20
  # Model Details
21
 
22
  ## Model Description
23
 
24
+ - **Developed by:** [https://www.tii.ae](https://www.tii.ae)
25
+ - **Model type:** Causal decoder-only
26
+ - **Architecture:** Transformer-base
27
+ - **Language(s) (NLP):** Mainly English
28
+ - **License:** TII Falcon-Mamba License 2.0
29
 
30
+ <br>
 
 
 
 
 
 
 
 
31
 
32
  # Usage
33
 
34
+ Find below some example scripts on how to use the model in `transformers` (Make sure to have the latest transformers, or the one built from source):
35
 
36
  ## Using the Pytorch model
37
 
 
41
  <summary> Click to expand </summary>
42
 
43
  ```python
44
+ from transformers import AutoTokenizer, AutoModelForCausalLM
45
 
46
+ tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
47
+ model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base")
 
 
48
 
49
+ input_text = "Question: How many hours in one day? Answer: "
50
  input_ids = tokenizer(input_text, return_tensors="pt").input_ids
51
 
52
  outputs = model.generate(input_ids)
 
62
 
63
  ```python
64
  # pip install accelerate
65
+ from transformers import AutoTokenizer, AutoModelForCausalLM
66
 
67
+ tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
68
+ model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base", device_map="auto")
69
 
70
+ input_text = "Question: How many hours in one day? Answer: "
71
  input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
72
 
73
  outputs = model.generate(input_ids)
 
76
 
77
  </details>
78
 
79
+ ### Running the model on a GPU using `torch.compile`
 
 
80
 
81
  <details>
82
  <summary> Click to expand </summary>
83
 
84
  ```python
 
85
  import torch
86
+ from transformers import AutoTokenizer, AutoModelForCausalLM
87
 
88
+ tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
89
+ model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base", torch_dtype=torch.bfloat16).to(0)
90
 
91
+ model = torch.compile(model)
 
92
 
93
+ input_text = "Question: How many hours in one day? Answer: "
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
  input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
95
 
96
  outputs = model.generate(input_ids)
 
99
 
100
  </details>
101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
  # Training Details
103
 
104
  ## Training Data
105
 
 
 
 
 
 
106
  ## Training Procedure
107
 
108
+ ### Training Hyperparameters
 
 
109
 
110
+ | **Hyperparameter** | **Value** | **Comment** |
111
+ |--------------------|------------|-------------------------------------------|
112
+ | Precision | `bfloat16` | |
113
+ | Optimizer | AdamW | |
114
+ | Max learning rate | | Following a WSD (warmup-stable-decay) learning rate schedule |
115
+ | Weight decay | | |
116
+ | Batch size | | |
117
 
118
 
119
  # Evaluation
120
 
 
121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
 
123
  # Citation
124
 
125
+