--- language: - en - es - pt tags: - falcon3 --- # Table of Contents 0. [TL;DR](#TL;DR) 1. [Model Details](#model-details) 2. [Usage](#usage) 3. [Training Details](#training-details) 4. [Evaluation](#evaluation) # TL;DR # Model Details ⚠️ **This is a raw, pretrained model, which should be further finetuned for most usecases.** ## Model Description - **Developed by:** [https://www.tii.ae](https://www.tii.ae) - **Model type:** Causal decoder-only - **Architecture:** Transformer-base - **Language(s) (NLP):** Mainly English - **License:** TII Falcon-LLM License 2.0
# Usage Find below some example scripts on how to use the model in `transformers` (Make sure to have the latest transformers, or the one built from source): ## Using the Pytorch model with 🤗 transformers ### Running the model on a CPU
Click to expand ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base") model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base") input_text = "Question: How many hours in one day? Answer: " input_ids = tokenizer(input_text, return_tensors="pt").input_ids outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ```
### Running the model on a GPU
Click to expand ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base") model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base", device_map="auto") input_text = "Question: How many hours in one day? Answer: " input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda") outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ```
### Running the model on a GPU using `torch.compile`
Click to expand ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base") model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base", torch_dtype=torch.bfloat16).to(0) model = torch.compile(model) input_text = "Question: How many hours in one day? Answer: " input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda") outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ```
# Training Details ## Training Data Falcon3-7B is trained on 15 Gigatokens of datasets comprising of web, code, STEM, high quality and mutlilingual data. ## Training Procedure Falcon3-7B is trained on 256 H100 nodes (world size 2048). ### Training Hyperparameters | **Hyperparameter** | **Value** | **Comment** | |--------------------|------------|---------------------------------------| | Precision | `bfloat16` | | | Optimizer | AdamW | | | Max learning rate | 6e-4 | Following a WSD (warmup-stable-decay) | | | | learning rate scheduler | | Weight decay | 1e-1 | | | z-loss | 1e-4 | | | Batch size | Variable | Batch size was gradually increased | | | | during the training | # Evaluation
Category Benchmark Llama3.1-8B Qwen2-7B Qwen2.5-7B Falcon3-7B-Base
General MMLU (5-shot) 65.2 70.4 74.2 67.5
MMLU-PRO (5-shot) 32.7 42.1 43.5 39.2
IFEval 12.0 30.6 33.9 34.3
Math GSM8K (5-shot) 49.4 77.9 82.9 76.2
MATH(4-shot) 4.1 17.5 15.5 18.0
Reasoning Arc Challenge (25-shot) 53.4 57.4 59.0 59.6
GPQA (0-shot) 31.0 31.9 33.0 35.5
MUSR (0-shot) 38.0 44.1 44.2 47.3
BBH (3-shot) 46.5 53.3 54.0 51.0
CommonSense Understanding PIQA (0-shot) 80.3 79.8 78.7 77.7
SciQ (0-shot) 96.3 95.9 96.6 95.3
Winogrande (0-shot) 74.0 72.1 72.9 71.0
OpenbookQA (0-shot) 33.4 35.2 33.6 31.4
# Citation