Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- zh
|
4 |
+
tags:
|
5 |
+
- pytorch
|
6 |
+
- zh
|
7 |
+
- Conversational
|
8 |
+
|
9 |
+
---
|
10 |
+
|
11 |
+
[roberta-zh](https://github.com/brightmart/roberta_zh) fine-tuned on human-annotated conversational model self-chat data. It supports 2-class calssification for multi-turn dialogue sensible detection.
|
12 |
+
Usage example:
|
13 |
+
|
14 |
+
NOTE: it should be used under similar data distribution.
|
15 |
+
|
16 |
+
```python
|
17 |
+
import torch
|
18 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
19 |
+
|
20 |
+
tokenizer = BertTokenizer.from_pretrained('thu-coai/roberta-zh-sensible')
|
21 |
+
model = BertForSequenceClassification.from_pretrained('thu-coai/roberta-zh-sensible', num_labels=2)
|
22 |
+
model.eva()
|
23 |
+
|
24 |
+
context = [
|
25 |
+
"你大爱的冷门古诗词是什么?\t一枝红艳露凝香,云雨巫山枉断肠",
|
26 |
+
"你大爱的冷门古诗词是什么?\t一枝红艳露凝香,云雨巫山枉断肠",
|
27 |
+
]
|
28 |
+
|
29 |
+
response = [
|
30 |
+
"最爱春江花月夜",
|
31 |
+
"我也很喜欢",
|
32 |
+
]
|
33 |
+
|
34 |
+
model_input = tokenizer(context, response, return_tensors='pt', padding=True)
|
35 |
+
with torch.no_grad():
|
36 |
+
model_output = model(**model_input, return_dict=True)
|
37 |
+
logits = model_output.logits
|
38 |
+
preds_all = torch.argmax(logits, dim=-1).cpu()
|
39 |
+
print(preds_all) # 1 for sensible response else 0
|
40 |
+
|
41 |
+
|
42 |
+
```
|