{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e67ed7e4b80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1733033854027820093, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJMRmD7y5xQ/muQEPZ8MAb9tNB4+hLkQPQAAAAAAAAAAANoAvSmcd7p+y4I1gMr9L0iZALtZGL60AACAPwAAgD9N5hA9SOm2Oaq1TDMe4h+wSJJmPBL6ybMAAIA/AACAP0DfrL1SO5C7tzFJPjLBybtEJru8AkuwvAAAAAAAAAAAYANFPk62n7xyr989BXxLvNAeG74utyC9AACAPwAAgD+qFJ4+clcpP2z4gT5NnA+/n/O8Pme8ETwAAAAAAAAAAIB7Gr7c9LI+RdsNPH4F074Ixe+9DfBvPQAAAAAAAAAAM5WFPewj7bsW91I8P+ICPcRIOr2+b9c9AACAPwAAgD99l4Y+8gOSPr2Oib2Q0rS+kyxWPZZZYbwAAAAAAAAAALqiC77yiBA/fZxpvfZJAb8QrQO+dN4nPAAAAAAAAAAAAPuyPD9pOj9+Wt68kMsPvx2GljpBzRQ9AAAAAAAAAACardu912c0PMOyZj7DelG+QC+rPQDZYz0AAAAAAAAAAEqGVL64EY49wLztPm11gr6xDLy9tvBRvwAAAAAAAAAAwMUmvgQPmj7OEwo+l7quvmenkr3Gwb09AAAAAAAAAACAyhs+hSb7PIIiWr7U/Ui+nsdevfnwCb0AAAAAAAAAADO/1LwceTO8DBsNvNJm1r02Wno8Qc9GPgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV7wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFYO6d1+y+MAWyUS9KMAXSUR0CjgnbcfvF4dX2UKGgGR0ByKs5sCT2WaAdLwGgIR0CjgosXBP9DdX2UKGgGR0Bw7yW8h9sraAdL2GgIR0CjgoitA9mpdX2UKGgGR0BxiZYjjaPCaAdLz2gIR0CjgwtkOI69dX2UKGgGR0BxyYd3jdYXaAdL8mgIR0Cjgy4AbQ1KdX2UKGgGR0BwOffYSQHSaAdLvWgIR0Cjg1KT8pCsdX2UKGgGR0BwtQUlAu7IaAdL9GgIR0Cjg1EzO5avdX2UKGgGR0Bu87bzshPkaAdLumgIR0Cjg2Q5vLowdX2UKGgGR0BsTjKRuCPIaAdN9gFoCEdAo4NxssQNC3V9lChoBkdAcNBHrQgLZ2gHS/loCEdAo4OTS7Xg+HV9lChoBkdAcZhrqt5lfGgHS+xoCEdAo4Oes90RvnV9lChoBkdAcN3kxh2GI2gHS8loCEdAo4Qq15Sm7HV9lChoBkdAQILDhtLteGgHS61oCEdAo4R5CSidrnV9lChoBkdAcfHepGWldmgHS85oCEdAo4VJKzzErHV9lChoBkdAcTUGh24d62gHS7BoCEdAo4VnBk7OmnV9lChoBkdAcmejOLR8dGgHS+JoCEdAo4WAmsvIwXV9lChoBkdAcaSnBLwnY2gHS9FoCEdAo4W6BEroXHV9lChoBkdAcRz1XeWOZWgHS7JoCEdAo4XGbXpW3nV9lChoBkdAcR4Q0oBq9GgHS8loCEdAo4XiT8pCr3V9lChoBkdAco2o73fygGgHS8FoCEdAo4XsNMGorHV9lChoBkdAb6kDNhVlw2gHTQUBaAhHQKOF/pfQa751fZQoaAZHQHCIhUFSsKdoB0vZaAhHQKOGIV8CxNZ1fZQoaAZHQHGJzf3vhIhoB003AWgIR0Cjhmlmvnr6dX2UKGgGR0BxB3iyY5T7aAdL/mgIR0CjhnjpLVWkdX2UKGgGR0Bvxm9Jz1braAdLz2gIR0CjhvPy9VWCdX2UKGgGR0ByJ3WWhRIjaAdNKQFoCEdAo4b4LCvX9XV9lChoBkdAcpEhxYJVsGgHS/NoCEdAo4cIKYzBRHV9lChoBkdAcRDA2ycCo2gHS7loCEdAo4ePrhR64XV9lChoBkdAcY552yLQ5WgHS8NoCEdAo4eS8nNPg3V9lChoBkdATtrxgAp8W2gHS6FoCEdAo4fAjSofjnV9lChoBkdAbracYIjW1GgHS7VoCEdAo4fNycTakHV9lChoBkdAZ3hDqnm7rmgHTUsDaAhHQKOHzslb/wR1fZQoaAZHQHDqoG2TgVJoB0vHaAhHQKOIByMDOkd1fZQoaAZHQHPJvCVKPGRoB0vfaAhHQKOIDfrrxAl1fZQoaAZHQHC4pL26ClJoB0vDaAhHQKOIMS5iExt1fZQoaAZHQHLN5xFRYRxoB0v4aAhHQKOIpp7kXDZ1fZQoaAZHQHIkEcfeUINoB0v3aAhHQKOI3M1TBIp1fZQoaAZHQG+xSGahHsloB0vqaAhHQKOI/DQ7cO91fZQoaAZHQHCuuokzGgloB0vXaAhHQKOJUNS619h1fZQoaAZHQG76pqynk1doB0veaAhHQKOJapaRp111fZQoaAZHQHJAmxY7q6hoB0v5aAhHQKOJ1DlYEGJ1fZQoaAZHQGr8RaxHG0hoB02xAmgIR0Cjid0rsjVydX2UKGgGR0Bw4JOBUaQ4aAdL3WgIR0CjihTho/RmdX2UKGgGR0BvXoAhje9BaAdLy2gIR0CjiiF6iTMadX2UKGgGR0ByIMP8Q7LdaAdLwWgIR0CjilGwqy4XdX2UKGgGR0BxlN1aGHpKaAdL92gIR0Cjim9eyAx0dX2UKGgGR0ByaD029+PSaAdL82gIR0CjipXVCojwdX2UKGgGR0BxZzPC2tuDaAdL6mgIR0CjisqcEvCedX2UKGgGR0BwMsIZ62ORaAdL32gIR0CjitS26TW5dX2UKGgGR0ByB3dDYywfaAdNEAFoCEdAo4sIqG1x83V9lChoBkdAcJQood+5OWgHS8VoCEdAo4sVAs052nV9lChoBkdAcB+pI+W4VmgHS8VoCEdAo4tlmSQo1HV9lChoBkdAcIXIsAeaKGgHS79oCEdAo4vDD/EOy3V9lChoBkdAbDNgw482aWgHTcwBaAhHQKOLzY2bXpZ1fZQoaAZHQHIh6c/dIoVoB00gAWgIR0CjjFrsa86FdX2UKGgGR0ByD/sY2sJZaAdL/mgIR0CjjGubiIcjdX2UKGgGR0BwiOj4593KaAdL0mgIR0CjjGxMewLWdX2UKGgGR0ByBx1V5rxiaAdLsmgIR0CjjHczyjHodX2UKGgGR0ByrGzmfXf7aAdL8GgIR0CjjLWDg62fdX2UKGgGR0BxTrPa+N96aAdLw2gIR0CjjN+LehwmdX2UKGgGR0Bx56JCSidraAdLyGgIR0CjjVzV2A5JdX2UKGgGR0Bvysfms/6gaAdL32gIR0CjjWRsdkrgdX2UKGgGR0Bx5Ox4Y77saAdNFwFoCEdAo41jj94u9XV9lChoBkdAcNgrNnoPkWgHS9FoCEdAo41sdPtUoHV9lChoBkdAbfcvStvGZWgHTQABaAhHQKONb7k4m1J1fZQoaAZHQHEanN1QqI9oB0u7aAhHQKONiEYfnwJ1fZQoaAZHQG7gE5p8F6loB0vPaAhHQKOODtXPqs51fZQoaAZHQHBZL/S6UaBoB0vgaAhHQKOONTvRZ2Z1fZQoaAZHQHGj2wmmce9oB0u4aAhHQKOOYlOXVsl1fZQoaAZHQHIwDIzWPLhoB0u9aAhHQKOOcEEC/491fZQoaAZHQHE8x4yGi6BoB0vVaAhHQKOOpM4cWCV1fZQoaAZHQHFSCFj/dZdoB0v2aAhHQKOPIQRPGhp1fZQoaAZHQHDtp+x4Y79oB0vlaAhHQKOPX7AtWdV1fZQoaAZHQHDosnNPgvVoB0u9aAhHQKOPeD+R5kd1fZQoaAZHQG2rnTy8SPFoB0vEaAhHQKOPhRtP5591fZQoaAZHQG2orrX18LNoB0vIaAhHQKOPj7ngYP51fZQoaAZHQHG8YTsY2sJoB0vQaAhHQKOPoHLzPKN1fZQoaAZHQHF2sibDuShoB0vOaAhHQKOPqpDu0C11fZQoaAZHQHGxO1F6RhdoB00bAWgIR0Cjj81JlJ6IdX2UKGgGR0Bw/BBF/hESaAdLxWgIR0CjkD6jnFHbdX2UKGgGR0BzXbVG0/noaAdNAQFoCEdAo5BPU8V58nV9lChoBkdAcdMMjNY8uGgHS9NoCEdAo5CStYB/7XV9lChoBkdAcc7F7D2rXGgHS8hoCEdAo5CrsSkCWHV9lChoBkdAcUuxgRbr1WgHS9VoCEdAo5DBpUPxx3V9lChoBkdAcJxHskY4yWgHS71oCEdAo5DAtYjjaXV9lChoBkfAShxT4tYjjmgHTVUCaAhHQKOQ3+gDifh1fZQoaAZHQGh8tLUTcqRoB001AmgIR0CjkR14X40udX2UKGgGR0BwRT+717IDaAdLv2gIR0CjkZCbc45tdX2UKGgGR0BwsYSkCV8kaAdLvmgIR0CjkZhtcfNidX2UKGgGR0Bw0NeyAxzraAdL1mgIR0CjkbA5Jbt7dX2UKGgGR0BzaqCcwxnGaAdL72gIR0Cjkbq5kK/mdX2UKGgGR0BwQoSh8IAwaAdLyGgIR0Cjkc/ReC04dX2UKGgGR0BvBEYXO4XoaAdL22gIR0Cjkfc+A3DOdX2UKGgGR0ByCSVTrE9/aAdL7mgIR0CjkgP+4smOdX2UKGgGR0BxNRp5/smfaAdL2mgIR0CjkiA2AG0NdX2UKGgGR0BwG/zErGzbaAdLt2gIR0CjknwumJm/dX2UKGgGR0Bw3MYYR/ViaAdL02gIR0Cjkn0CaJAMdX2UKGgGR0Bw2g150KZ2aAdL3WgIR0CjkqRJNCZ4dX2UKGgGR0BvKrlzU7SzaAdLxmgIR0CjkrhPCVKPdX2UKGgGR0BwCCYIBzV+aAdLwGgIR0Cjkryv9tMxdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}