SamLowe commited on
Commit
c027266
·
1 Parent(s): e7b1f4e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -28,7 +28,7 @@ The model was trained using `AutoModelForSequenceClassification.from_pretrained`
28
 
29
  #### Inference
30
 
31
- There are multiple ways to use this model in Hugginface Transformers. Possibly the simplest is using a pipeline
32
 
33
  ```python
34
  from transformers import pipeline
@@ -93,7 +93,7 @@ With a threshold of 0.5 applied to binarize the model outputs, as per the above
93
  | surprise | 0.981 | 0.750 | 0.404 | 0.525 | 0.542 | 141 | 0.5 |
94
  | neutral | 0.782 | 0.694 | 0.604 | 0.646 | 0.492 | 1787 | 0.5 |
95
 
96
- Optimizing the threshold per label for the one that gives the optimum F1 metrics gives slightly better metrics (sacrificing some precision for a greater gain in recall, hence to the benefit of F1):
97
 
98
  | | accuracy | precision | recall | f1 | mcc | support | threshold |
99
  | -------------- | -------- | --------- | ------ | ----- | ----- | ------- | --------- |
 
28
 
29
  #### Inference
30
 
31
+ There are multiple ways to use this model in Huggingface Transformers. Possibly the simplest is using a pipeline:
32
 
33
  ```python
34
  from transformers import pipeline
 
93
  | surprise | 0.981 | 0.750 | 0.404 | 0.525 | 0.542 | 141 | 0.5 |
94
  | neutral | 0.782 | 0.694 | 0.604 | 0.646 | 0.492 | 1787 | 0.5 |
95
 
96
+ Optimizing the threshold per label for the one that gives the optimum F1 metrics gives slightly better metrics - sacrificing some precision for a greater gain in recall, hence to the benefit of F1 (how this was done is shown in the above notebook):
97
 
98
  | | accuracy | precision | recall | f1 | mcc | support | threshold |
99
  | -------------- | -------- | --------- | ------ | ----- | ----- | ------- | --------- |