SamLowe commited on
Commit
8996072
·
1 Parent(s): 6de6e23

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -0
README.md CHANGED
@@ -130,6 +130,18 @@ Optimizing the threshold per label for the one that gives the optimum F1 metrics
130
  | surprise | 0.977 | 0.543 | 0.674 | 0.601 | 0.593 | 141 | 0.15 |
131
  | neutral | 0.758 | 0.598 | 0.810 | 0.688 | 0.513 | 1787 | 0.25 |
132
 
 
 
 
 
 
 
 
 
 
 
 
 
133
  #### Commentary on the dataset
134
 
135
  Some labels (E.g. gratitude) when considered independently perform very strongly with F1 exceeding 0.9, whilst others (E.g. relief) perform very poorly.
 
130
  | surprise | 0.977 | 0.543 | 0.674 | 0.601 | 0.593 | 141 | 0.15 |
131
  | neutral | 0.758 | 0.598 | 0.810 | 0.688 | 0.513 | 1787 | 0.25 |
132
 
133
+ This improves the overall metrics:
134
+
135
+ - Precision: 0.542
136
+ - Recall: 0.577
137
+ - F1: 0.541
138
+
139
+ Or if calculated weighted by the relative size of the support of each label:
140
+
141
+ - Precision: 0.572
142
+ - Recall: 0.677
143
+ - F1: 0.611
144
+
145
  #### Commentary on the dataset
146
 
147
  Some labels (E.g. gratitude) when considered independently perform very strongly with F1 exceeding 0.9, whilst others (E.g. relief) perform very poorly.