File size: 7,916 Bytes
a0ca33f
 
 
 
 
 
 
 
 
 
 
 
 
5c7e32a
 
 
2a9e24f
 
 
 
 
 
 
 
 
3c9fc88
2a9e24f
a0ca33f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
license: cc-by-nc-nd-3.0
---
# SFR-Iterative-DPO-Llama-3-8B-R

## Quantization Description
This repo contains a GGUF Quantized versions of the SFR-Iterative-DPO-Llama-3-8B-R model

<div style="text-align: center;">
    <a href="https://github.com/thesven/GGUF-n-Go">
        <img src="https://github.com/thesven/GGUF-n-Go/blob/main/assets/quantized_with.png?raw=true" alt="image/png" style="max-width: 350px;">
    </a>
</div>

weights from:
[maldv/SFR-Iterative-DPO-LLaMA-3-8B-R](https://huggingface.co/maldv/SFR-Iterative-DPO-LLaMA-3-8B-R)

## Prompt format

```
<|start_header_id|>system<|end_header_id|>
{system_prompt}<|eot_id|>
<|start_header_id|>user<|end_header_id|>
{prompt}<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
```


## Introduction
We release a state-of-the-art instruct model of its class, **SFR-Iterative-DPO-LLaMA-3-8B-R**.
On all three widely-used instruct model benchmarks: **Alpaca-Eval-V2**, **MT-Bench**, **Chat-Arena-Hard**, our model outperforms all models of similar size (e.g., LLaMA-3-8B-it), most large open-sourced models (e.g., Mixtral-8x7B-it),
and strong proprietary models (e.g., GPT-3.5-turbo-0613). The model is trained with open-sourced datasets without any additional human-/GPT4-labeling.

## Model Releases
- [SFT model](https://huggingface.co/Salesforce/SFR-SFT-LLaMA-3-8B-R)
- [Reward model](https://huggingface.co/Salesforce/SFR-RM-LLaMA-3-8B-R)
- [RLHF model](https://huggingface.co/Salesforce/SFR-Iterative-DPO-LLaMA-3-8B-R)


## Training methods
We have developed a simple and efficient online RLHF recipe for LLM instruct training. Our recipe is DPO-based and thus much cheaper and simpler to train and tune compared to PPO-based approaches.
Unlike widely-used offline DPO, the online component of our approach effectively mitigates distribution shifts during policy optimization.
For a detailed exposition, please refer to our accompanying technical report.


## Chat Benchmarks

| **Model**               | **Size** | **Method**        | **LC Alpaca-Eval-V2** | **MT-Bench** | **Chat-Arena-Hard** |
|-------------------------|----------|-------------------|-----------------------|--------------|---------------------|
| **Small Open-Sourced Models**           |          |                   |                       |              |                     |
| Gemma-7B-it             | 7B       | SFT               | 10.4                  | 6.38         | 7.5                 |
| Zephyr-7B-beta          | 7B       | Vanilla DPO       | 13.1                  | 7.34         | -                   |
| Mistral-7B-v0.2-it      | 7B       | SFT               | 17.1                  | 7.51         | 12.6                |
| Open-Chat-0106          | 7B       | SFT               | 15.6                  | 7.8          | -                   |
| Starling-7B-beta        | 7B       | PPO               | 25.8                  | 8.12         | 23.0                |
| LLaMA-3-8B-it           | 8B       | RS+DPO+PPO        | 22.9                  | 8.16         | 20.6                |
| **Ours**                |          |                   |                       |              |                     |
| Ours (SFT baseline)     | 8B       | SFT               | 10.2                  | 7.69         | 5.6                 |
| Ours (DPO baseline)     | 8B       | Vanilla DPO       | 22.5                  | 8.17         | 22.4                |
| Ours (Online RLHF)      | 8B       | Iterative DPO     | **37.2**              | **8.46**     | **29.1**            |
| **Large Open-Sourced Models**       |          |                   |                       |              |                     |
| Vicuna-33b-v1.3         | 33B      | SFT               | 17.6                  | 7.12         | 8.6                 |
| Yi-34B-Chat             | 34B      | SFT               | 27.2                  | -            | 23.1                |
| Mixtral-8x7B-it         | 45B*     | SFT               | 23.7                  | 8.30         | 23.4                |
| Tulu-2-DPO-70B          | 70B      | Vanilla DPO       | 21.2                  | 7.89         | 15.0                |
| LLaMA-3-70B-it          | 70B      | RS+DPO+PPO        | 34.4                  | 8.95         | 41.1                |
| Mixtral-8x22B-it        | 141B*    | SFT               | 30.9                  | 8.66         | 36.4                |
| **Proprietary Models**  |       |                   |                       |              |                     |
| GPT-3.5-turbo-1106      | -        | -                 | 19.3                  | 8.35         | 18.9                |
| GPT-3.5-turbo-0613      | -        | -                 | 22.7                  | 8.39         | 24.8                |
| GPT-4-0613              | -        | -                 | 30.2                  | 9.18         | 37.9                |
| Claude-3-Opus           | -        | -                 | 40.5                  | 9.00         | 60.4                |
| GPT-4 Turbo (04/09)     | -        | -                 | 55.0                  | -            | 82.6                |


## Academic Benchmarks

| **Model**                  | **Size** | **Method**      | **GSM-8K** | **MMLU** | **HumanEval** | **TruthfulQA** | **ARC** | **MBPP** |
|----------------------------|----------|-----------------|------------|----------|---------------|----------------|---------|----------|
| LLaMA-3-8B-it              | 8B       | RS+DPO+PPO      | 79.6       | 66.0     | 61.6          | 43.9           | 59.5    | 61.1     |
| Ours (SFT baseline)        | 8B       | SFT             | 74.2       | 64.7     | 65.2          | 53.4           | 61.4    | 62.3     |
| Ours (DPO baseline)        | 8B       | Vanilla DPO     | 79.8       | 64.5     | 63.4          | 61.8           | 65.2    | 60.3     |
| Ours (Iterative RLHF)      | 8B       | Iterative DPO   | 80.7       | 65.3     | 64.6          | 60.4           | 64.3    | 60.8     |


## Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" 

model = AutoModelForCausalLM.from_pretrained("Salesforce/SFR-Iterative-DPO-LLaMA-3-8B-R")
tokenizer = AutoTokenizer.from_pretrained("Salesforce/SFR-Iterative-DPO-LLaMA-3-8B-R")

messages = [
    {"role": "user", "content": "I'm trying to teach myself to have nicer handwriting. Can you help?"},
]

model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = model_inputs.to(device)
model.to(device)

output_tokens = model.generate(model_inputs, max_new_tokens=1024, do_sample=True)
model_outputs = tokenizer.batch_decode(output_tokens)
print(model_outputs[0])
```


## Limitations
SFR-Iterative-DPO-LLaMA-3-8B-R is a research model developed as part of our RLHF initiative at Salesforce. 
While safety and ethical considerations are integral to our alignment process, 
there remains the possibility that the model could generate offensive or unethical content, particularly under adversarial conditions. 
We are committed to continuous improvement in our models to minimize such risks and encourage responsible usage.

## Citation
Please cite our papers if you find our models are useful.

```bibtex
@misc{dong2024rlhf,
      title={RLHF Workflow: From Reward Modeling to Online RLHF}, 
      author={Hanze Dong and Wei Xiong and Bo Pang and Haoxiang Wang and Han Zhao and Yingbo Zhou and Nan Jiang and Doyen Sahoo and Caiming Xiong and Tong Zhang},
      year={2024},
      eprint={2405.07863},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

@misc{xiong2024iterative,
      title={Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-Constraint}, 
      author={Wei Xiong and Hanze Dong and Chenlu Ye and Ziqi Wang and Han Zhong and Heng Ji and Nan Jiang and Tong Zhang},
      year={2024},
      eprint={2312.11456},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
```