thesven commited on
Commit
0880964
·
verified ·
1 Parent(s): 6b91601

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - en
5
+ library_name: transformers
6
+ tags:
7
+ - data labeling
8
+ ---
9
+ <div style="width: auto; margin-left: auto; margin-right: auto; background-color:black">
10
+ <img src="https://assets-global.website-files.com/6423879a8f63c1bb18d74bfa/648818d56d04c3bdf36d71ab_Refuel_rev8-01_ts-p-1600.png" alt="Refuel.ai" style="width: 100%; min-width: 400px; display: block; margin: auto;">
11
+ </div>
12
+
13
+ # - Quantization Description
14
+
15
+ This repo contains GGUF quantized versions of the Refuel Ai Llama 3 Refueled .
16
+ The model is supplied in different quantizations so that you can see what works best on the hardware you would like to run it on.
17
+
18
+ The repo contains quantizations in the following types:
19
+
20
+ Q4_0
21
+ Q4_1
22
+ Q4_K
23
+ Q4_K_S
24
+ Q4_K_M
25
+ Q5_0
26
+ Q5_1
27
+ Q5_K
28
+ Q5_K_M
29
+ Q5_K_S
30
+ Q6_K
31
+ Q8_0
32
+ Q2_K
33
+ Q3_K
34
+ Q3_K_S
35
+ Q3_K_XS
36
+ IQ2_K
37
+ IQ3_S
38
+ IQ3_XXS
39
+ IQ4_NL
40
+ IQ4_XS
41
+ IQ5_K
42
+ IQ2_S
43
+ IQ2_XS
44
+ IQ1_S
45
+
46
+ ## Model Details
47
+
48
+ RefuelLLM-2-small, aka Llama-3-Refueled, is a Llama3-8B base model instruction tuned on a corpus of 2750+ datasets, spanning tasks such as classification, reading comprehension, structured attribute extraction and entity resolution. We're excited to open-source the model for the community to build on top of.
49
+
50
+ * More details about [RefuelLLM-2 family of models](https://www.refuel.ai/blog-posts/announcing-refuel-llm-2)
51
+ * You can also try out the models in our [LLM playground](https://labs.refuel.ai/playground)
52
+
53
+ **Model developers** - Refuel AI
54
+
55
+ **Input** - Text only.
56
+
57
+ **Output** - Text only.
58
+
59
+ **Architecture** - Llama-3-Refueled is built on top of Llama-3-8B-instruct which is an auto-regressive language model that uses an optimized transformer architecture.
60
+
61
+ **Release Date** - May 8, 2024.
62
+
63
+ **License** - [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/deed.en)
64
+ ```
65
+
66
+ ## Training Data
67
+
68
+ The model was both trained on over 4 Billion tokens, spanning 2750+ NLP tasks. Our training collection consists majorly of:
69
+ 1. Human annotated datasets like Flan, Task Source, and the Aya collection
70
+ 2. Synthetic datasets like OpenOrca, OpenHermes and WizardLM
71
+ 3. Proprietary datasets developed or licensed by Refuel AI
72
+
73
+ ## Benchmarks
74
+
75
+ In this section, we report the results for Refuel models on our benchmark of labeling tasks. For details on the methodology see [here](https://refuel.ai/blog-posts/announcing-refuel-llm-2).
76
+
77
+ <table>
78
+ <tr></tr>
79
+ <tr><th>Provider</th><th>Model</th><th colspan="4" style="text-align: center">LLM Output Quality (by task type)</tr>
80
+ <tr><td></td><td></td><td>Overall</td><td>Classification</td><td>Reading Comprehension</td><td>Structure Extraction</td><td>Entity Matching</td><td></td></tr>
81
+ <tr><td>Refuel</td><td>RefuelLLM-2</td><td>83.82%</td><td>84.94%</td><td>76.03%</td><td>88.16%</td><td>92.00%</td><td></td></tr>
82
+ <tr><td>OpenAI</td><td>GPT-4-Turbo</td><td>80.88%</td><td>81.77%</td><td>72.08%</td><td>84.79%</td><td>97.20%</td><td></td></tr>
83
+ <tr><td>Refuel</td><td>RefuelLLM-2-small (Llama-3-Refueled)</td><td>79.67%</td><td>81.72%</td><td>70.04%</td><td>84.28%</td><td>92.00%</td><td></td></tr>
84
+ <tr><td>Anthropic</td><td>Claude-3-Opus</td><td>79.19%</td><td>82.49%</td><td>67.30%</td><td>88.25%</td><td>94.96%</td><td></td></tr>
85
+ <tr><td>Meta</td><td>Llama3-70B-Instruct</td><td>78.20%</td><td>79.38%</td><td>66.03%</td><td>85.96%</td><td>94.13%</td><td></td></tr>
86
+ <tr><td>Google</td><td>Gemini-1.5-Pro</td><td>74.59%</td><td>73.52%</td><td>60.67%</td><td>84.27%</td><td>98.48%</td><td></td></tr>
87
+ <tr><td>Mistral</td><td>Mixtral-8x7B-Instruct</td><td>62.87%</td><td>79.11%</td><td>45.56%</td><td>47.08%</td><td>86.52%</td><td></td></tr>
88
+ <tr><td>Anthropic</td><td>Claude-3-Sonnet</td><td>70.99%</td><td>79.91%</td><td>45.44%</td><td>78.10%</td><td>96.34%</td><td></td></tr>
89
+ <tr><td>Anthropic</td><td>Claude-3-Haiku</td><td>69.23%</td><td>77.27%</td><td>50.19%</td><td>84.97%</td><td>54.08%</td><td></td></tr>
90
+ <tr><td>OpenAI</td><td>GPT-3.5-Turbo</td><td>68.13%</td><td>74.39%</td><td>53.21%</td><td>69.40%</td><td>80.41%</td><td></td></tr>
91
+ <tr><td>Meta</td><td>Llama3-8B-Instruct</td><td>62.30%</td><td>68.52%</td><td>49.16%</td><td>65.09%</td><td>63.61%</td><td></td></tr>
92
+ </table>
93
+
94
+
95
+ ## Limitations
96
+
97
+ The Llama-3-Refueled does not have any moderation mechanisms. We're looking forward to engaging with the community
98
+ on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.