Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
library_name: transformers
|
6 |
+
tags:
|
7 |
+
- data labeling
|
8 |
+
---
|
9 |
+
<div style="width: auto; margin-left: auto; margin-right: auto; background-color:black">
|
10 |
+
<img src="https://assets-global.website-files.com/6423879a8f63c1bb18d74bfa/648818d56d04c3bdf36d71ab_Refuel_rev8-01_ts-p-1600.png" alt="Refuel.ai" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
11 |
+
</div>
|
12 |
+
|
13 |
+
# - Quantization Description
|
14 |
+
|
15 |
+
This repo contains GGUF quantized versions of the Refuel Ai Llama 3 Refueled .
|
16 |
+
The model is supplied in different quantizations so that you can see what works best on the hardware you would like to run it on.
|
17 |
+
|
18 |
+
The repo contains quantizations in the following types:
|
19 |
+
|
20 |
+
Q4_0
|
21 |
+
Q4_1
|
22 |
+
Q4_K
|
23 |
+
Q4_K_S
|
24 |
+
Q4_K_M
|
25 |
+
Q5_0
|
26 |
+
Q5_1
|
27 |
+
Q5_K
|
28 |
+
Q5_K_M
|
29 |
+
Q5_K_S
|
30 |
+
Q6_K
|
31 |
+
Q8_0
|
32 |
+
Q2_K
|
33 |
+
Q3_K
|
34 |
+
Q3_K_S
|
35 |
+
Q3_K_XS
|
36 |
+
IQ2_K
|
37 |
+
IQ3_S
|
38 |
+
IQ3_XXS
|
39 |
+
IQ4_NL
|
40 |
+
IQ4_XS
|
41 |
+
IQ5_K
|
42 |
+
IQ2_S
|
43 |
+
IQ2_XS
|
44 |
+
IQ1_S
|
45 |
+
|
46 |
+
## Model Details
|
47 |
+
|
48 |
+
RefuelLLM-2-small, aka Llama-3-Refueled, is a Llama3-8B base model instruction tuned on a corpus of 2750+ datasets, spanning tasks such as classification, reading comprehension, structured attribute extraction and entity resolution. We're excited to open-source the model for the community to build on top of.
|
49 |
+
|
50 |
+
* More details about [RefuelLLM-2 family of models](https://www.refuel.ai/blog-posts/announcing-refuel-llm-2)
|
51 |
+
* You can also try out the models in our [LLM playground](https://labs.refuel.ai/playground)
|
52 |
+
|
53 |
+
**Model developers** - Refuel AI
|
54 |
+
|
55 |
+
**Input** - Text only.
|
56 |
+
|
57 |
+
**Output** - Text only.
|
58 |
+
|
59 |
+
**Architecture** - Llama-3-Refueled is built on top of Llama-3-8B-instruct which is an auto-regressive language model that uses an optimized transformer architecture.
|
60 |
+
|
61 |
+
**Release Date** - May 8, 2024.
|
62 |
+
|
63 |
+
**License** - [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/deed.en)
|
64 |
+
```
|
65 |
+
|
66 |
+
## Training Data
|
67 |
+
|
68 |
+
The model was both trained on over 4 Billion tokens, spanning 2750+ NLP tasks. Our training collection consists majorly of:
|
69 |
+
1. Human annotated datasets like Flan, Task Source, and the Aya collection
|
70 |
+
2. Synthetic datasets like OpenOrca, OpenHermes and WizardLM
|
71 |
+
3. Proprietary datasets developed or licensed by Refuel AI
|
72 |
+
|
73 |
+
## Benchmarks
|
74 |
+
|
75 |
+
In this section, we report the results for Refuel models on our benchmark of labeling tasks. For details on the methodology see [here](https://refuel.ai/blog-posts/announcing-refuel-llm-2).
|
76 |
+
|
77 |
+
<table>
|
78 |
+
<tr></tr>
|
79 |
+
<tr><th>Provider</th><th>Model</th><th colspan="4" style="text-align: center">LLM Output Quality (by task type)</tr>
|
80 |
+
<tr><td></td><td></td><td>Overall</td><td>Classification</td><td>Reading Comprehension</td><td>Structure Extraction</td><td>Entity Matching</td><td></td></tr>
|
81 |
+
<tr><td>Refuel</td><td>RefuelLLM-2</td><td>83.82%</td><td>84.94%</td><td>76.03%</td><td>88.16%</td><td>92.00%</td><td></td></tr>
|
82 |
+
<tr><td>OpenAI</td><td>GPT-4-Turbo</td><td>80.88%</td><td>81.77%</td><td>72.08%</td><td>84.79%</td><td>97.20%</td><td></td></tr>
|
83 |
+
<tr><td>Refuel</td><td>RefuelLLM-2-small (Llama-3-Refueled)</td><td>79.67%</td><td>81.72%</td><td>70.04%</td><td>84.28%</td><td>92.00%</td><td></td></tr>
|
84 |
+
<tr><td>Anthropic</td><td>Claude-3-Opus</td><td>79.19%</td><td>82.49%</td><td>67.30%</td><td>88.25%</td><td>94.96%</td><td></td></tr>
|
85 |
+
<tr><td>Meta</td><td>Llama3-70B-Instruct</td><td>78.20%</td><td>79.38%</td><td>66.03%</td><td>85.96%</td><td>94.13%</td><td></td></tr>
|
86 |
+
<tr><td>Google</td><td>Gemini-1.5-Pro</td><td>74.59%</td><td>73.52%</td><td>60.67%</td><td>84.27%</td><td>98.48%</td><td></td></tr>
|
87 |
+
<tr><td>Mistral</td><td>Mixtral-8x7B-Instruct</td><td>62.87%</td><td>79.11%</td><td>45.56%</td><td>47.08%</td><td>86.52%</td><td></td></tr>
|
88 |
+
<tr><td>Anthropic</td><td>Claude-3-Sonnet</td><td>70.99%</td><td>79.91%</td><td>45.44%</td><td>78.10%</td><td>96.34%</td><td></td></tr>
|
89 |
+
<tr><td>Anthropic</td><td>Claude-3-Haiku</td><td>69.23%</td><td>77.27%</td><td>50.19%</td><td>84.97%</td><td>54.08%</td><td></td></tr>
|
90 |
+
<tr><td>OpenAI</td><td>GPT-3.5-Turbo</td><td>68.13%</td><td>74.39%</td><td>53.21%</td><td>69.40%</td><td>80.41%</td><td></td></tr>
|
91 |
+
<tr><td>Meta</td><td>Llama3-8B-Instruct</td><td>62.30%</td><td>68.52%</td><td>49.16%</td><td>65.09%</td><td>63.61%</td><td></td></tr>
|
92 |
+
</table>
|
93 |
+
|
94 |
+
|
95 |
+
## Limitations
|
96 |
+
|
97 |
+
The Llama-3-Refueled does not have any moderation mechanisms. We're looking forward to engaging with the community
|
98 |
+
on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
|