File size: 1,873 Bytes
55ca996 c31627b 55ca996 c31627b 55ca996 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-stats-extract
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-stats-extract
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3450
- Rouge1: 62.188
- Rouge2: 51.5988
- Rougel: 55.8383
- Rougelsum: 58.4919
- Gen Len: 90.4286
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 4 | 1.0447 | 51.2166 | 37.2933 | 44.8635 | 47.5954 | 74.0 |
| No log | 2.0 | 8 | 0.5919 | 55.0964 | 43.0158 | 49.4166 | 51.4412 | 92.2857 |
| No log | 3.0 | 12 | 0.4159 | 60.2619 | 48.694 | 54.0969 | 54.9467 | 95.1429 |
| No log | 4.0 | 16 | 0.3450 | 62.188 | 51.5988 | 55.8383 | 58.4919 | 90.4286 |
### Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
|