dathudeptrai
commited on
Commit
Β·
ca15c9e
1
Parent(s):
a08c552
π¦ Update README
Browse files
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- tensorflowtts
|
4 |
+
- audio
|
5 |
+
- text-to-speech
|
6 |
+
- text-to-mel
|
7 |
+
language: ko
|
8 |
+
license: apache-2.0
|
9 |
+
datasets:
|
10 |
+
- kss
|
11 |
+
widget:
|
12 |
+
- text: "μ μ μ°λ¦¬μ μν λ¬Έμ μλ κ΄μ¬μ΄ μλ€. μ μ λ€λ§ κ²½νμ μΌλ‘ ν΅ν©ν λΏμ΄λ€."
|
13 |
+
---
|
14 |
+
|
15 |
+
# Tacotron 2 with Guided Attention trained on KSS (Korean)
|
16 |
+
This repository provides a pretrained [Tacotron2](https://arxiv.org/abs/1712.05884) trained with [Guided Attention](https://arxiv.org/abs/1710.08969) on KSS dataset (KO). For a detail of the model, we encourage you to read more about
|
17 |
+
[TensorFlowTTS](https://github.com/TensorSpeech/TensorFlowTTS).
|
18 |
+
|
19 |
+
|
20 |
+
## Install TensorFlowTTS
|
21 |
+
First of all, please install SpeechBrain with the following command:
|
22 |
+
```
|
23 |
+
pip install TensorFlowTTS
|
24 |
+
```
|
25 |
+
|
26 |
+
### Converting your Text to Mel Spectrogram
|
27 |
+
```python
|
28 |
+
from tensorflow_tts.inference import AutoProcessor
|
29 |
+
from tensorflow_tts.inference import TFAutoModel
|
30 |
+
|
31 |
+
ljspeech_processor = AutoProcessor.from_pretrained("tensorspeech/tts-tacotron2-kss-ko")
|
32 |
+
tacotron2 = TFAutoModel.from_pretrained("tensorspeech/tts-tacotron2-kss-ko")
|
33 |
+
|
34 |
+
text = "μ μ μ°λ¦¬μ μν λ¬Έμ μλ κ΄μ¬μ΄ μλ€. μ μ λ€λ§ κ²½νμ μΌλ‘ ν΅ν©ν λΏμ΄λ€."
|
35 |
+
|
36 |
+
input_ids = processor.text_to_sequence(text)
|
37 |
+
|
38 |
+
decoder_output, mel_outputs, stop_token_prediction, alignment_history = tacotron2.inference(
|
39 |
+
input_ids=tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0),
|
40 |
+
input_lengths=tf.convert_to_tensor([len(input_ids)], tf.int32),
|
41 |
+
speaker_ids=tf.convert_to_tensor([0], dtype=tf.int32),
|
42 |
+
)
|
43 |
+
|
44 |
+
```
|
45 |
+
|
46 |
+
#### Referencing Tacotron 2
|
47 |
+
```
|
48 |
+
@article{DBLP:journals/corr/abs-1712-05884,
|
49 |
+
author = {Jonathan Shen and
|
50 |
+
Ruoming Pang and
|
51 |
+
Ron J. Weiss and
|
52 |
+
Mike Schuster and
|
53 |
+
Navdeep Jaitly and
|
54 |
+
Zongheng Yang and
|
55 |
+
Zhifeng Chen and
|
56 |
+
Yu Zhang and
|
57 |
+
Yuxuan Wang and
|
58 |
+
R. J. Skerry{-}Ryan and
|
59 |
+
Rif A. Saurous and
|
60 |
+
Yannis Agiomyrgiannakis and
|
61 |
+
Yonghui Wu},
|
62 |
+
title = {Natural {TTS} Synthesis by Conditioning WaveNet on Mel Spectrogram
|
63 |
+
Predictions},
|
64 |
+
journal = {CoRR},
|
65 |
+
volume = {abs/1712.05884},
|
66 |
+
year = {2017},
|
67 |
+
url = {http://arxiv.org/abs/1712.05884},
|
68 |
+
archivePrefix = {arXiv},
|
69 |
+
eprint = {1712.05884},
|
70 |
+
timestamp = {Thu, 28 Nov 2019 08:59:52 +0100},
|
71 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-1712-05884.bib},
|
72 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
73 |
+
}
|
74 |
+
```
|
75 |
+
|
76 |
+
#### Referencing TensorFlowTTS
|
77 |
+
```
|
78 |
+
@misc{TFTTS,
|
79 |
+
author = {Minh Nguyen, Alejandro Miguel Velasquez, Erogol, Kuan Chen, Dawid Kobus, Takuya Ebata,
|
80 |
+
Trinh Le and Yunchao He},
|
81 |
+
title = {TensorflowTTS},
|
82 |
+
year = {2020},
|
83 |
+
publisher = {GitHub},
|
84 |
+
journal = {GitHub repository},
|
85 |
+
howpublished = {\\url{https://github.com/TensorSpeech/TensorFlowTTS}},
|
86 |
+
}
|
87 |
+
```
|