---
license: gemma
library_name: transformers
pipeline_tag: text-generation
extra_gated_heading: Access Gemma on Hugging Face
extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and
agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging
Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license
tags:
- TensorBlock
- GGUF
base_model: google/shieldgemma-9b
---
## google/shieldgemma-9b - GGUF
This repo contains GGUF format model files for [google/shieldgemma-9b](https://huggingface.co/google/shieldgemma-9b).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
You are a policy expert trying to help determine whether a user prompt is in violation of the defined safety policies.
Human Question: {prompt}
Our safety principle is defined in the below:
* {system_prompt}
===
Does the human question violate the above principle? Your answer must start with 'Yes' or 'No'. And then walk through step by step to be sure we answer correctly.
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [shieldgemma-9b-Q2_K.gguf](https://huggingface.co/tensorblock/shieldgemma-9b-GGUF/blob/main/shieldgemma-9b-Q2_K.gguf) | Q2_K | 3.805 GB | smallest, significant quality loss - not recommended for most purposes |
| [shieldgemma-9b-Q3_K_S.gguf](https://huggingface.co/tensorblock/shieldgemma-9b-GGUF/blob/main/shieldgemma-9b-Q3_K_S.gguf) | Q3_K_S | 4.338 GB | very small, high quality loss |
| [shieldgemma-9b-Q3_K_M.gguf](https://huggingface.co/tensorblock/shieldgemma-9b-GGUF/blob/main/shieldgemma-9b-Q3_K_M.gguf) | Q3_K_M | 4.762 GB | very small, high quality loss |
| [shieldgemma-9b-Q3_K_L.gguf](https://huggingface.co/tensorblock/shieldgemma-9b-GGUF/blob/main/shieldgemma-9b-Q3_K_L.gguf) | Q3_K_L | 5.132 GB | small, substantial quality loss |
| [shieldgemma-9b-Q4_0.gguf](https://huggingface.co/tensorblock/shieldgemma-9b-GGUF/blob/main/shieldgemma-9b-Q4_0.gguf) | Q4_0 | 5.443 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [shieldgemma-9b-Q4_K_S.gguf](https://huggingface.co/tensorblock/shieldgemma-9b-GGUF/blob/main/shieldgemma-9b-Q4_K_S.gguf) | Q4_K_S | 5.479 GB | small, greater quality loss |
| [shieldgemma-9b-Q4_K_M.gguf](https://huggingface.co/tensorblock/shieldgemma-9b-GGUF/blob/main/shieldgemma-9b-Q4_K_M.gguf) | Q4_K_M | 5.761 GB | medium, balanced quality - recommended |
| [shieldgemma-9b-Q5_0.gguf](https://huggingface.co/tensorblock/shieldgemma-9b-GGUF/blob/main/shieldgemma-9b-Q5_0.gguf) | Q5_0 | 6.484 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [shieldgemma-9b-Q5_K_S.gguf](https://huggingface.co/tensorblock/shieldgemma-9b-GGUF/blob/main/shieldgemma-9b-Q5_K_S.gguf) | Q5_K_S | 6.484 GB | large, low quality loss - recommended |
| [shieldgemma-9b-Q5_K_M.gguf](https://huggingface.co/tensorblock/shieldgemma-9b-GGUF/blob/main/shieldgemma-9b-Q5_K_M.gguf) | Q5_K_M | 6.647 GB | large, very low quality loss - recommended |
| [shieldgemma-9b-Q6_K.gguf](https://huggingface.co/tensorblock/shieldgemma-9b-GGUF/blob/main/shieldgemma-9b-Q6_K.gguf) | Q6_K | 7.589 GB | very large, extremely low quality loss |
| [shieldgemma-9b-Q8_0.gguf](https://huggingface.co/tensorblock/shieldgemma-9b-GGUF/blob/main/shieldgemma-9b-Q8_0.gguf) | Q8_0 | 9.827 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/shieldgemma-9b-GGUF --include "shieldgemma-9b-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/shieldgemma-9b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```