---
language:
- en
library_name: transformers
license: apache-2.0
tags:
- gpt
- llm
- large language model
- h2o-llmstudio
- TensorBlock
- GGUF
thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
datasets:
- Open-Orca/OpenOrca
- OpenAssistant/oasst2
- HuggingFaceH4/ultrachat_200k
- meta-math/MetaMathQA
widget:
- messages:
- role: user
content: Why is drinking water so healthy?
pipeline_tag: text-generation
base_model: h2oai/h2o-danube-1.8b-sft
---
## h2oai/h2o-danube-1.8b-sft - GGUF
This repo contains GGUF format model files for [h2oai/h2o-danube-1.8b-sft](https://huggingface.co/h2oai/h2o-danube-1.8b-sft).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
<|system|>{system_prompt}<|prompt|>{prompt}<|answer|>
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [h2o-danube-1.8b-sft-Q2_K.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q2_K.gguf) | Q2_K | 0.711 GB | smallest, significant quality loss - not recommended for most purposes |
| [h2o-danube-1.8b-sft-Q3_K_S.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q3_K_S.gguf) | Q3_K_S | 0.820 GB | very small, high quality loss |
| [h2o-danube-1.8b-sft-Q3_K_M.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q3_K_M.gguf) | Q3_K_M | 0.905 GB | very small, high quality loss |
| [h2o-danube-1.8b-sft-Q3_K_L.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q3_K_L.gguf) | Q3_K_L | 0.980 GB | small, substantial quality loss |
| [h2o-danube-1.8b-sft-Q4_0.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q4_0.gguf) | Q4_0 | 1.052 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [h2o-danube-1.8b-sft-Q4_K_S.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q4_K_S.gguf) | Q4_K_S | 1.060 GB | small, greater quality loss |
| [h2o-danube-1.8b-sft-Q4_K_M.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q4_K_M.gguf) | Q4_K_M | 1.112 GB | medium, balanced quality - recommended |
| [h2o-danube-1.8b-sft-Q5_0.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q5_0.gguf) | Q5_0 | 1.271 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [h2o-danube-1.8b-sft-Q5_K_S.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q5_K_S.gguf) | Q5_K_S | 1.271 GB | large, low quality loss - recommended |
| [h2o-danube-1.8b-sft-Q5_K_M.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q5_K_M.gguf) | Q5_K_M | 1.302 GB | large, very low quality loss - recommended |
| [h2o-danube-1.8b-sft-Q6_K.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q6_K.gguf) | Q6_K | 1.503 GB | very large, extremely low quality loss |
| [h2o-danube-1.8b-sft-Q8_0.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q8_0.gguf) | Q8_0 | 1.947 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/h2o-danube-1.8b-sft-GGUF --include "h2o-danube-1.8b-sft-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/h2o-danube-1.8b-sft-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```