--- language: - en library_name: transformers license: apache-2.0 tags: - gpt - llm - large language model - h2o-llmstudio - TensorBlock - GGUF thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico datasets: - Open-Orca/OpenOrca - OpenAssistant/oasst2 - HuggingFaceH4/ultrachat_200k - meta-math/MetaMathQA widget: - messages: - role: user content: Why is drinking water so healthy? pipeline_tag: text-generation base_model: h2oai/h2o-danube-1.8b-sft ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## h2oai/h2o-danube-1.8b-sft - GGUF This repo contains GGUF format model files for [h2oai/h2o-danube-1.8b-sft](https://huggingface.co/h2oai/h2o-danube-1.8b-sft). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` <|system|>{system_prompt}<|prompt|>{prompt}<|answer|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [h2o-danube-1.8b-sft-Q2_K.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q2_K.gguf) | Q2_K | 0.711 GB | smallest, significant quality loss - not recommended for most purposes | | [h2o-danube-1.8b-sft-Q3_K_S.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q3_K_S.gguf) | Q3_K_S | 0.820 GB | very small, high quality loss | | [h2o-danube-1.8b-sft-Q3_K_M.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q3_K_M.gguf) | Q3_K_M | 0.905 GB | very small, high quality loss | | [h2o-danube-1.8b-sft-Q3_K_L.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q3_K_L.gguf) | Q3_K_L | 0.980 GB | small, substantial quality loss | | [h2o-danube-1.8b-sft-Q4_0.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q4_0.gguf) | Q4_0 | 1.052 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [h2o-danube-1.8b-sft-Q4_K_S.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q4_K_S.gguf) | Q4_K_S | 1.060 GB | small, greater quality loss | | [h2o-danube-1.8b-sft-Q4_K_M.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q4_K_M.gguf) | Q4_K_M | 1.112 GB | medium, balanced quality - recommended | | [h2o-danube-1.8b-sft-Q5_0.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q5_0.gguf) | Q5_0 | 1.271 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [h2o-danube-1.8b-sft-Q5_K_S.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q5_K_S.gguf) | Q5_K_S | 1.271 GB | large, low quality loss - recommended | | [h2o-danube-1.8b-sft-Q5_K_M.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q5_K_M.gguf) | Q5_K_M | 1.302 GB | large, very low quality loss - recommended | | [h2o-danube-1.8b-sft-Q6_K.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q6_K.gguf) | Q6_K | 1.503 GB | very large, extremely low quality loss | | [h2o-danube-1.8b-sft-Q8_0.gguf](https://huggingface.co/tensorblock/h2o-danube-1.8b-sft-GGUF/blob/main/h2o-danube-1.8b-sft-Q8_0.gguf) | Q8_0 | 1.947 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/h2o-danube-1.8b-sft-GGUF --include "h2o-danube-1.8b-sft-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/h2o-danube-1.8b-sft-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```