--- license: other license_name: exaone license_link: https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct/blob/main/LICENSE language: - en - ko tags: - lg-ai - exaone - exaone-3.5 - TensorBlock - GGUF pipeline_tag: text-generation library_name: transformers base_model: beomi/EXAONE-3.5-2.4B-Instruct-Llamafied ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## beomi/EXAONE-3.5-2.4B-Instruct-Llamafied - GGUF This repo contains GGUF format model files for [beomi/EXAONE-3.5-2.4B-Instruct-Llamafied](https://huggingface.co/beomi/EXAONE-3.5-2.4B-Instruct-Llamafied). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` [|system|]{system_prompt}[|endofturn|] [|user|]{prompt} [|assistant|] ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [EXAONE-3.5-2.4B-Instruct-Llamafied-Q2_K.gguf](https://huggingface.co/tensorblock/EXAONE-3.5-2.4B-Instruct-Llamafied-GGUF/blob/main/EXAONE-3.5-2.4B-Instruct-Llamafied-Q2_K.gguf) | Q2_K | 1.096 GB | smallest, significant quality loss - not recommended for most purposes | | [EXAONE-3.5-2.4B-Instruct-Llamafied-Q3_K_S.gguf](https://huggingface.co/tensorblock/EXAONE-3.5-2.4B-Instruct-Llamafied-GGUF/blob/main/EXAONE-3.5-2.4B-Instruct-Llamafied-Q3_K_S.gguf) | Q3_K_S | 1.253 GB | very small, high quality loss | | [EXAONE-3.5-2.4B-Instruct-Llamafied-Q3_K_M.gguf](https://huggingface.co/tensorblock/EXAONE-3.5-2.4B-Instruct-Llamafied-GGUF/blob/main/EXAONE-3.5-2.4B-Instruct-Llamafied-Q3_K_M.gguf) | Q3_K_M | 1.362 GB | very small, high quality loss | | [EXAONE-3.5-2.4B-Instruct-Llamafied-Q3_K_L.gguf](https://huggingface.co/tensorblock/EXAONE-3.5-2.4B-Instruct-Llamafied-GGUF/blob/main/EXAONE-3.5-2.4B-Instruct-Llamafied-Q3_K_L.gguf) | Q3_K_L | 1.459 GB | small, substantial quality loss | | [EXAONE-3.5-2.4B-Instruct-Llamafied-Q4_0.gguf](https://huggingface.co/tensorblock/EXAONE-3.5-2.4B-Instruct-Llamafied-GGUF/blob/main/EXAONE-3.5-2.4B-Instruct-Llamafied-Q4_0.gguf) | Q4_0 | 1.573 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [EXAONE-3.5-2.4B-Instruct-Llamafied-Q4_K_S.gguf](https://huggingface.co/tensorblock/EXAONE-3.5-2.4B-Instruct-Llamafied-GGUF/blob/main/EXAONE-3.5-2.4B-Instruct-Llamafied-Q4_K_S.gguf) | Q4_K_S | 1.580 GB | small, greater quality loss | | [EXAONE-3.5-2.4B-Instruct-Llamafied-Q4_K_M.gguf](https://huggingface.co/tensorblock/EXAONE-3.5-2.4B-Instruct-Llamafied-GGUF/blob/main/EXAONE-3.5-2.4B-Instruct-Llamafied-Q4_K_M.gguf) | Q4_K_M | 1.645 GB | medium, balanced quality - recommended | | [EXAONE-3.5-2.4B-Instruct-Llamafied-Q5_0.gguf](https://huggingface.co/tensorblock/EXAONE-3.5-2.4B-Instruct-Llamafied-GGUF/blob/main/EXAONE-3.5-2.4B-Instruct-Llamafied-Q5_0.gguf) | Q5_0 | 1.873 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [EXAONE-3.5-2.4B-Instruct-Llamafied-Q5_K_S.gguf](https://huggingface.co/tensorblock/EXAONE-3.5-2.4B-Instruct-Llamafied-GGUF/blob/main/EXAONE-3.5-2.4B-Instruct-Llamafied-Q5_K_S.gguf) | Q5_K_S | 1.873 GB | large, low quality loss - recommended | | [EXAONE-3.5-2.4B-Instruct-Llamafied-Q5_K_M.gguf](https://huggingface.co/tensorblock/EXAONE-3.5-2.4B-Instruct-Llamafied-GGUF/blob/main/EXAONE-3.5-2.4B-Instruct-Llamafied-Q5_K_M.gguf) | Q5_K_M | 1.911 GB | large, very low quality loss - recommended | | [EXAONE-3.5-2.4B-Instruct-Llamafied-Q6_K.gguf](https://huggingface.co/tensorblock/EXAONE-3.5-2.4B-Instruct-Llamafied-GGUF/blob/main/EXAONE-3.5-2.4B-Instruct-Llamafied-Q6_K.gguf) | Q6_K | 2.193 GB | very large, extremely low quality loss | | [EXAONE-3.5-2.4B-Instruct-Llamafied-Q8_0.gguf](https://huggingface.co/tensorblock/EXAONE-3.5-2.4B-Instruct-Llamafied-GGUF/blob/main/EXAONE-3.5-2.4B-Instruct-Llamafied-Q8_0.gguf) | Q8_0 | 2.839 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/EXAONE-3.5-2.4B-Instruct-Llamafied-GGUF --include "EXAONE-3.5-2.4B-Instruct-Llamafied-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/EXAONE-3.5-2.4B-Instruct-Llamafied-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```