woodchen7 commited on
Commit
12b5fb9
·
verified ·
1 Parent(s): c9e801e

Upload configuration_hunyuan.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. configuration_hunyuan.py +212 -0
configuration_hunyuan.py ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Tencent Inc. All Rights Reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ HunYuan model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+
29
+ class HunYuanConfig(PretrainedConfig):
30
+ r"""
31
+ This is the configuration class to store the configuration of a [`HunYuanModel`]. It is used to instantiate an
32
+ HunYuan model according to the specified arguments, defining the model architecture. Instantiating a configuration
33
+ with the defaults will yield a similar configuration to that of the HunYuan-7B.
34
+
35
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
36
+ documentation from [`PretrainedConfig`] for more information.
37
+
38
+
39
+ Args:
40
+ vocab_size (`int`, *optional*, defaults to 32000):
41
+ Vocabulary size of the HunYuan model. Defines the number of different tokens that can be represented by the
42
+ `inputs_ids` passed when calling [`HunYuanModel`]
43
+ hidden_size (`int`, *optional*, defaults to 4096):
44
+ Dimension of the hidden representations.
45
+ intermediate_size (`int`, *optional*, defaults to 11008):
46
+ Dimension of the MLP representations.
47
+ num_hidden_layers (`int`, *optional*, defaults to 32):
48
+ Number of hidden layers in the Transformer decoder.
49
+ num_attention_heads (`int`, *optional*, defaults to 32):
50
+ Number of attention heads for each attention layer in the Transformer decoder.
51
+ num_key_value_heads (`int`, *optional*):
52
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
53
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
54
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
55
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
56
+ by meanpooling all the original heads within that group. For more details checkout [this
57
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
58
+ `num_attention_heads`.
59
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
60
+ The non-linear activation function (function or string) in the decoder.
61
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
62
+ The maximum sequence length that this model might ever be used with.
63
+ initializer_range (`float`, *optional*, defaults to 0.02):
64
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
65
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
66
+ The epsilon used by the rms normalization layers.
67
+ use_cache (`bool`, *optional*, defaults to `True`):
68
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
69
+ relevant if `config.is_decoder=True`.
70
+ pad_token_id (`int`, *optional*):
71
+ Padding token id.
72
+ bos_token_id (`int`, *optional*, defaults to 1):
73
+ Beginning of stream token id.
74
+ eos_token_id (`int`, *optional*, defaults to 2):
75
+ End of stream token id.
76
+ pretraining_tp (`int`, *optional*, defaults to 1):
77
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
78
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
79
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
80
+ issue](https://github.com/pytorch/pytorch/issues/76232).
81
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
82
+ Whether to tie weight embeddings
83
+ rope_theta (`float`, *optional*, defaults to 10000.0):
84
+ The base period of the RoPE embeddings.
85
+ rope_scaling (`Dict`, *optional*):
86
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
87
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
88
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
89
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
90
+ these scaling strategies behave:
91
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
92
+ experimental feature, subject to breaking API changes in future versions.
93
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
94
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
95
+ attention_dropout (`float`, *optional*, defaults to 0.0):
96
+ The dropout ratio for the attention probabilities.
97
+ use_qk_norm (`bool`, *optional*, defaults to `False`):
98
+ Whether query and key in attention use norm
99
+ use_cla (`bool`, *optional*, defaults to `False`):
100
+ Whether to use CLA in attention
101
+ cla_share_factor (`int`, *optional*, defaults to 1):
102
+ The share factor of CLA
103
+ """
104
+
105
+ model_type = "hunyuan"
106
+ keys_to_ignore_at_inference = ["past_key_values"]
107
+
108
+ def __init__(
109
+ self,
110
+ vocab_size=290943,
111
+ hidden_size=4096,
112
+ intermediate_size=11008,
113
+ num_hidden_layers=32,
114
+ num_attention_heads=32,
115
+ num_key_value_heads=None,
116
+ hidden_act="silu",
117
+ max_position_embeddings=2048,
118
+ initializer_range=0.02,
119
+ rms_norm_eps=1e-5,
120
+ use_cache=True,
121
+ pad_token_id=0,
122
+ bos_token_id=1,
123
+ eos_token_id=2,
124
+ pretraining_tp=1,
125
+ tie_word_embeddings=False,
126
+ rope_theta=10000.0,
127
+ rope_scaling=None,
128
+ attention_bias=False,
129
+ attention_dropout=0.0,
130
+ use_qk_norm=False,
131
+ use_cla=False,
132
+ cla_share_factor=1,
133
+ num_experts=1,
134
+ use_mixed_mlp_moe=False,
135
+ num_shared_expert=1,
136
+ moe_topk=1,
137
+ capacity_factor=1.0,
138
+ moe_drop_tokens=False,
139
+ moe_random_routing_dropped_token=False,
140
+ **kwargs,
141
+ ):
142
+ self.vocab_size = vocab_size
143
+ self.max_position_embeddings = max_position_embeddings
144
+ self.hidden_size = hidden_size
145
+ self.intermediate_size = intermediate_size
146
+ self.num_hidden_layers = num_hidden_layers
147
+ self.num_attention_heads = num_attention_heads
148
+ self.num_experts = num_experts
149
+ self.use_mixed_mlp_moe = use_mixed_mlp_moe
150
+ self.num_shared_expert = num_shared_expert
151
+ self.moe_topk = moe_topk
152
+ self.capacity_factor = capacity_factor
153
+ self.moe_drop_tokens = moe_drop_tokens
154
+ self.moe_random_routing_dropped_token = moe_random_routing_dropped_token
155
+
156
+ # for backward compatibility
157
+ if num_key_value_heads is None:
158
+ num_key_value_heads = num_attention_heads
159
+
160
+ self.num_key_value_heads = num_key_value_heads
161
+ self.hidden_act = hidden_act
162
+ self.initializer_range = initializer_range
163
+ self.rms_norm_eps = rms_norm_eps
164
+ self.pretraining_tp = pretraining_tp
165
+ self.use_cache = use_cache
166
+ self.rope_theta = rope_theta
167
+ self.rope_scaling = rope_scaling
168
+ # self._rope_scaling_validation() # TODO: Need validation?
169
+ self.attention_bias = attention_bias
170
+ self.attention_dropout = attention_dropout
171
+ self.use_qk_norm = use_qk_norm
172
+ self.use_cla = use_cla
173
+ self.cla_share_factor = cla_share_factor
174
+
175
+ super().__init__(
176
+ pad_token_id=pad_token_id,
177
+ bos_token_id=bos_token_id,
178
+ eos_token_id=eos_token_id,
179
+ tie_word_embeddings=tie_word_embeddings,
180
+ **kwargs,
181
+ )
182
+
183
+ def _rope_scaling_validation(self):
184
+ """
185
+ Validate the `rope_scaling` configuration.
186
+ """
187
+ if self.rope_scaling is None:
188
+ return
189
+
190
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
191
+ raise ValueError(
192
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor` or `type` and `alpha`, "
193
+ f"got {self.rope_scaling}"
194
+ )
195
+ rope_scaling_type = self.rope_scaling.get("type", None)
196
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
197
+ rope_scaling_alpha = self.rope_scaling.get("alpha", None)
198
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
199
+ raise ValueError(
200
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
201
+ )
202
+ if rope_scaling_factor is None and rope_scaling_alpha is None:
203
+ raise ValueError(f"`rope_scaling`'s factor or alpha field must be have one, got both of none")
204
+ if rope_scaling_factor is not None:
205
+ if not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
206
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1.0, got {rope_scaling_factor}")
207
+ if rope_scaling_alpha is not None:
208
+ if not isinstance(rope_scaling_alpha, float) or rope_scaling_alpha <= 1.0:
209
+ raise ValueError(f"`rope_scaling`'s alpha field must be a float > 1.0, got {rope_scaling_alpha}")
210
+
211
+
212
+