tekraj commited on
Commit
77f567b
·
1 Parent(s): 181dda7

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -30,3 +30,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
30
  *.zip filter=lfs diff=lfs merge=lfs -text
31
  *.zst filter=lfs diff=lfs merge=lfs -text
32
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
30
  *.zip filter=lfs diff=lfs merge=lfs -text
31
  *.zst filter=lfs diff=lfs merge=lfs -text
32
  *tfevents* filter=lfs diff=lfs merge=lfs -text
33
+ pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ datasets:
8
+ - embedding-data/QQP_triplets
9
+ ---
10
+
11
+ # tekraj/avodamed-synonym-generator1
12
+
13
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
+
15
+ <!--- Describe your model here -->
16
+
17
+ ## Usage (Sentence-Transformers)
18
+
19
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
20
+
21
+ ```
22
+ pip install -U sentence-transformers
23
+ ```
24
+
25
+ Then you can use the model like this:
26
+
27
+ ```python
28
+ from sentence_transformers import SentenceTransformer
29
+ sentences = ["This is an example sentence", "Each sentence is converted"]
30
+
31
+ model = SentenceTransformer('tekraj/avodamed-synonym-generator1')
32
+ embeddings = model.encode(sentences)
33
+ print(embeddings)
34
+ ```
35
+
36
+
37
+
38
+ ## Evaluation Results
39
+
40
+ <!--- Describe how your model was evaluated -->
41
+
42
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=tekraj/avodamed-synonym-generator1)
43
+
44
+
45
+ ## Training
46
+ The model was trained with the parameters:
47
+
48
+ **DataLoader**:
49
+
50
+ `torch.utils.data.dataloader.DataLoader` of length 1 with parameters:
51
+ ```
52
+ {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
53
+ ```
54
+
55
+ **Loss**:
56
+
57
+ `sentence_transformers.losses.TripletLoss.TripletLoss` with parameters:
58
+ ```
59
+ {'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5}
60
+ ```
61
+
62
+ Parameters of the fit()-Method:
63
+ ```
64
+ {
65
+ "epochs": 10,
66
+ "evaluation_steps": 0,
67
+ "evaluator": "NoneType",
68
+ "max_grad_norm": 1,
69
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
70
+ "optimizer_params": {
71
+ "lr": 2e-05
72
+ },
73
+ "scheduler": "WarmupLinear",
74
+ "steps_per_epoch": null,
75
+ "warmup_steps": 10000,
76
+ "weight_decay": 0.01
77
+ }
78
+ ```
79
+
80
+
81
+ ## Full Model Architecture
82
+ ```
83
+ SentenceTransformer(
84
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
85
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
86
+ (2): Normalize()
87
+ )
88
+ ```
89
+
90
+ ## Citing & Authors
91
+
92
+ <!--- Describe where people can find more information -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/fm-pc-lt-182/.cache/torch/sentence_transformers/sentence-transformers_all-MiniLM-L6-v2/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.21.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ }
7
+ }
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72347de8ad32499729a4f56c09f7af1faaa87b406144bb4668860c875834f5c7
3
+ size 90888945
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "do_basic_tokenize": true,
4
+ "do_lower_case": true,
5
+ "mask_token": "[MASK]",
6
+ "model_max_length": 512,
7
+ "name_or_path": "/home/fm-pc-lt-182/.cache/torch/sentence_transformers/sentence-transformers_all-MiniLM-L6-v2/",
8
+ "never_split": null,
9
+ "pad_token": "[PAD]",
10
+ "sep_token": "[SEP]",
11
+ "special_tokens_map_file": "/home/fm-pc-lt-182/.cache/torch/sentence_transformers/sentence-transformers_all-MiniLM-L6-v2/special_tokens_map.json",
12
+ "strip_accents": null,
13
+ "tokenize_chinese_chars": true,
14
+ "tokenizer_class": "BertTokenizer",
15
+ "unk_token": "[UNK]"
16
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff