hyunwoo3235
commited on
Commit
·
38e10c2
1
Parent(s):
3098e4c
Add 200k steps ckpt
Browse files- config.json +77 -0
- flax_model.msgpack +3 -0
- modeling_flax_hubert.py +966 -0
- preprocessor_config.json +9 -0
config.json
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_dropout": 0.1,
|
3 |
+
"apply_spec_augment": true,
|
4 |
+
"architectures": [
|
5 |
+
"HubertModel"
|
6 |
+
],
|
7 |
+
"auto_map": {
|
8 |
+
"FlaxAutoModel": "modeling_flax_hubert.FlaxHubertModel"
|
9 |
+
},
|
10 |
+
"attention_dropout": 0.1,
|
11 |
+
"bos_token_id": 1,
|
12 |
+
"conv_bias": true,
|
13 |
+
"conv_dim": [
|
14 |
+
512,
|
15 |
+
512,
|
16 |
+
512,
|
17 |
+
512,
|
18 |
+
512,
|
19 |
+
512,
|
20 |
+
512
|
21 |
+
],
|
22 |
+
"conv_kernel": [
|
23 |
+
10,
|
24 |
+
3,
|
25 |
+
3,
|
26 |
+
3,
|
27 |
+
3,
|
28 |
+
2,
|
29 |
+
2
|
30 |
+
],
|
31 |
+
"conv_stride": [
|
32 |
+
5,
|
33 |
+
2,
|
34 |
+
2,
|
35 |
+
2,
|
36 |
+
2,
|
37 |
+
2,
|
38 |
+
2
|
39 |
+
],
|
40 |
+
"ctc_loss_reduction": "sum",
|
41 |
+
"ctc_zero_infinity": false,
|
42 |
+
"diversity_loss_weight": 0.1,
|
43 |
+
"do_stable_layer_norm": true,
|
44 |
+
"eos_token_id": 2,
|
45 |
+
"feat_extract_activation": "gelu",
|
46 |
+
"feat_extract_dropout": 0.0,
|
47 |
+
"feat_extract_norm": "layer",
|
48 |
+
"feat_proj_dropout": 0.1,
|
49 |
+
"feat_proj_layer_norm": true,
|
50 |
+
"final_dropout": 0.1,
|
51 |
+
"final_proj_size": 1024,
|
52 |
+
"hidden_act": "gelu",
|
53 |
+
"hidden_dropout": 0.1,
|
54 |
+
"hidden_dropout_prob": 0.1,
|
55 |
+
"hidden_size": 1280,
|
56 |
+
"initializer_range": 0.02,
|
57 |
+
"intermediate_size": 5120,
|
58 |
+
"layer_norm_eps": 1e-05,
|
59 |
+
"layerdrop": 0.1,
|
60 |
+
"mask_feature_length": 10,
|
61 |
+
"mask_feature_min_masks": 0,
|
62 |
+
"mask_feature_prob": 0.0,
|
63 |
+
"mask_time_length": 10,
|
64 |
+
"mask_time_min_masks": 2,
|
65 |
+
"mask_time_prob": 0.075,
|
66 |
+
"model_type": "hubert",
|
67 |
+
"num_attention_heads": 16,
|
68 |
+
"num_conv_pos_embedding_groups": 16,
|
69 |
+
"num_conv_pos_embeddings": 128,
|
70 |
+
"num_feat_extract_layers": 7,
|
71 |
+
"num_hidden_layers": 48,
|
72 |
+
"pad_token_id": 0,
|
73 |
+
"torch_dtype": "float32",
|
74 |
+
"transformers_version": "4.30.0.dev0",
|
75 |
+
"use_weighted_layer_sum": false,
|
76 |
+
"vocab_size": 32
|
77 |
+
}
|
flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3162892b23234514935ba0ca031919e853e67b61a4b64e98fb96a431e09c1f20
|
3 |
+
size 3856287483
|
modeling_flax_hubert.py
ADDED
@@ -0,0 +1,966 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Flax Hubert model."""
|
16 |
+
|
17 |
+
from functools import partial
|
18 |
+
from typing import Optional, Tuple, Union
|
19 |
+
|
20 |
+
import flax
|
21 |
+
import flax.linen as nn
|
22 |
+
import jax
|
23 |
+
import jax.numpy as jnp
|
24 |
+
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
|
25 |
+
from flax.linen.attention import dot_product_attention_weights
|
26 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
27 |
+
from jax import lax
|
28 |
+
from transformers import HubertConfig
|
29 |
+
from transformers.modeling_flax_outputs import FlaxBaseModelOutput
|
30 |
+
from transformers.modeling_flax_utils import (
|
31 |
+
ACT2FN,
|
32 |
+
FlaxPreTrainedModel,
|
33 |
+
)
|
34 |
+
from transformers.utils import ModelOutput, logging
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
|
39 |
+
@flax.struct.dataclass
|
40 |
+
class FlaxHubertOutput(ModelOutput):
|
41 |
+
last_hidden_state: jnp.ndarray = None
|
42 |
+
hidden_states: Optional[Tuple[jnp.ndarray]] = None
|
43 |
+
attentions: Optional[Tuple[jnp.ndarray]] = None
|
44 |
+
extract_features: jnp.ndarray = None
|
45 |
+
|
46 |
+
|
47 |
+
class FlaxConvWithWeightNorm(nn.Module):
|
48 |
+
config: HubertConfig
|
49 |
+
dtype: jnp.dtype = jnp.float32
|
50 |
+
|
51 |
+
def setup(self):
|
52 |
+
self.conv = nn.Conv(
|
53 |
+
features=self.config.hidden_size,
|
54 |
+
kernel_size=(self.config.num_conv_pos_embeddings,),
|
55 |
+
kernel_init=jax.nn.initializers.he_normal(),
|
56 |
+
padding="VALID",
|
57 |
+
feature_group_count=self.config.num_conv_pos_embedding_groups,
|
58 |
+
dtype=self.dtype,
|
59 |
+
)
|
60 |
+
weight_shape = (
|
61 |
+
self.conv.features,
|
62 |
+
self.conv.features // self.conv.feature_group_count,
|
63 |
+
self.conv.kernel_size[0],
|
64 |
+
)
|
65 |
+
self.weight_v = self.param(
|
66 |
+
"weight_v", jax.nn.initializers.he_normal(), weight_shape
|
67 |
+
)
|
68 |
+
self.weight_g = self.param(
|
69 |
+
"weight_g",
|
70 |
+
lambda _: jnp.linalg.norm(self.weight_v, axis=(0, 1))[None, None, :],
|
71 |
+
)
|
72 |
+
self.bias = self.param("bias", jax.nn.initializers.zeros, (self.conv.features,))
|
73 |
+
self.prev_padding = self.conv.kernel_size[0] // 2
|
74 |
+
|
75 |
+
def _get_normed_weights(self):
|
76 |
+
weight_v_norm = jnp.linalg.norm(self.weight_v, axis=(0, 1))[None, None, :]
|
77 |
+
normed_weight_v = jnp.divide(self.weight_v, weight_v_norm)
|
78 |
+
normed_kernel = jnp.multiply(normed_weight_v, self.weight_g)
|
79 |
+
return normed_kernel
|
80 |
+
|
81 |
+
def __call__(self, hidden_states):
|
82 |
+
kernel = self._get_normed_weights()
|
83 |
+
hidden_states = jnp.pad(
|
84 |
+
hidden_states, ((0, 0), (self.prev_padding, self.prev_padding), (0, 0))
|
85 |
+
)
|
86 |
+
hidden_states = self.conv.apply(
|
87 |
+
{"params": {"kernel": kernel.T, "bias": self.bias}}, hidden_states
|
88 |
+
)
|
89 |
+
return hidden_states
|
90 |
+
|
91 |
+
|
92 |
+
class FlaxHubertNoLayerNormConvLayer(nn.Module):
|
93 |
+
config: HubertConfig
|
94 |
+
layer_id: int = 0
|
95 |
+
dtype: jnp.dtype = jnp.float32
|
96 |
+
|
97 |
+
def setup(self):
|
98 |
+
self.in_conv_dim = (
|
99 |
+
self.config.conv_dim[self.layer_id - 1] if self.layer_id > 0 else 1
|
100 |
+
)
|
101 |
+
self.out_conv_dim = self.config.conv_dim[self.layer_id]
|
102 |
+
|
103 |
+
self.conv = nn.Conv(
|
104 |
+
features=self.config.conv_dim[self.layer_id],
|
105 |
+
kernel_size=(self.config.conv_kernel[self.layer_id],),
|
106 |
+
strides=(self.config.conv_stride[self.layer_id],),
|
107 |
+
use_bias=self.config.conv_bias,
|
108 |
+
kernel_init=jax.nn.initializers.he_normal(),
|
109 |
+
padding="VALID",
|
110 |
+
dtype=self.dtype,
|
111 |
+
)
|
112 |
+
self.activation = ACT2FN[self.config.feat_extract_activation]
|
113 |
+
|
114 |
+
def __call__(self, hidden_states):
|
115 |
+
hidden_states = self.conv(hidden_states)
|
116 |
+
hidden_states = self.activation(hidden_states)
|
117 |
+
return hidden_states
|
118 |
+
|
119 |
+
|
120 |
+
class FlaxHubertLayerNormConvLayer(nn.Module):
|
121 |
+
config: HubertConfig
|
122 |
+
layer_id: int = 0
|
123 |
+
dtype: jnp.dtype = jnp.float32
|
124 |
+
|
125 |
+
def setup(self):
|
126 |
+
self.in_conv_dim = (
|
127 |
+
self.config.conv_dim[self.layer_id - 1] if self.layer_id > 0 else 1
|
128 |
+
)
|
129 |
+
self.out_conv_dim = self.config.conv_dim[self.layer_id]
|
130 |
+
|
131 |
+
self.conv = nn.Conv(
|
132 |
+
features=self.config.conv_dim[self.layer_id],
|
133 |
+
kernel_size=(self.config.conv_kernel[self.layer_id],),
|
134 |
+
strides=(self.config.conv_stride[self.layer_id],),
|
135 |
+
use_bias=self.config.conv_bias,
|
136 |
+
kernel_init=jax.nn.initializers.he_normal(),
|
137 |
+
padding="VALID",
|
138 |
+
dtype=self.dtype,
|
139 |
+
)
|
140 |
+
self.layer_norm = nn.LayerNorm(
|
141 |
+
epsilon=self.config.layer_norm_eps, dtype=self.dtype
|
142 |
+
)
|
143 |
+
self.activation = ACT2FN[self.config.feat_extract_activation]
|
144 |
+
|
145 |
+
def __call__(self, hidden_states):
|
146 |
+
hidden_states = self.conv(hidden_states)
|
147 |
+
hidden_states = self.layer_norm(hidden_states)
|
148 |
+
hidden_states = self.activation(hidden_states)
|
149 |
+
return hidden_states
|
150 |
+
|
151 |
+
|
152 |
+
class FlaxHubertGroupNormConvLayer(nn.Module):
|
153 |
+
config: HubertConfig
|
154 |
+
layer_id: int = 0
|
155 |
+
dtype: jnp.dtype = jnp.float32
|
156 |
+
|
157 |
+
def setup(self):
|
158 |
+
self.in_conv_dim = (
|
159 |
+
self.config.conv_dim[self.layer_id - 1] if self.layer_id > 0 else 1
|
160 |
+
)
|
161 |
+
self.out_conv_dim = self.config.conv_dim[self.layer_id]
|
162 |
+
|
163 |
+
self.conv = nn.Conv(
|
164 |
+
features=self.config.conv_dim[self.layer_id],
|
165 |
+
kernel_size=(self.config.conv_kernel[self.layer_id],),
|
166 |
+
strides=(self.config.conv_stride[self.layer_id],),
|
167 |
+
use_bias=self.config.conv_bias,
|
168 |
+
kernel_init=jax.nn.initializers.he_normal(),
|
169 |
+
padding="VALID",
|
170 |
+
dtype=self.dtype,
|
171 |
+
)
|
172 |
+
self.activation = ACT2FN[self.config.feat_extract_activation]
|
173 |
+
|
174 |
+
self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, dtype=self.dtype)
|
175 |
+
|
176 |
+
def __call__(self, hidden_states):
|
177 |
+
hidden_states = self.conv(hidden_states)
|
178 |
+
hidden_states = self.layer_norm(hidden_states)
|
179 |
+
hidden_states = self.activation(hidden_states)
|
180 |
+
return hidden_states
|
181 |
+
|
182 |
+
|
183 |
+
class FlaxHubertPositionalConvEmbedding(nn.Module):
|
184 |
+
config: HubertConfig
|
185 |
+
dtype: jnp.dtype = jnp.float32
|
186 |
+
|
187 |
+
def setup(self):
|
188 |
+
self.conv = FlaxConvWithWeightNorm(self.config, dtype=self.dtype)
|
189 |
+
self.activation = ACT2FN[self.config.feat_extract_activation]
|
190 |
+
self.num_pad_remove = 1 if self.config.num_conv_pos_embeddings % 2 == 0 else 0
|
191 |
+
|
192 |
+
def __call__(self, hidden_states):
|
193 |
+
hidden_states = hidden_states.transpose((0, 1, 2))
|
194 |
+
|
195 |
+
hidden_states = self.conv(hidden_states)
|
196 |
+
|
197 |
+
if self.num_pad_remove > 0:
|
198 |
+
hidden_states = hidden_states[:, : -self.num_pad_remove, :]
|
199 |
+
hidden_states = self.activation(hidden_states)
|
200 |
+
|
201 |
+
hidden_states = hidden_states.transpose((0, 1, 2))
|
202 |
+
return hidden_states
|
203 |
+
|
204 |
+
|
205 |
+
class FlaxConvLayersCollection(nn.Module):
|
206 |
+
config: HubertConfig
|
207 |
+
dtype: jnp.dtype = jnp.float32
|
208 |
+
|
209 |
+
def setup(self):
|
210 |
+
if self.config.feat_extract_norm == "layer":
|
211 |
+
self.layers = [
|
212 |
+
FlaxHubertLayerNormConvLayer(
|
213 |
+
self.config, layer_id=i, name=str(i), dtype=self.dtype
|
214 |
+
)
|
215 |
+
for i in range(self.config.num_feat_extract_layers)
|
216 |
+
]
|
217 |
+
elif self.config.feat_extract_norm == "group":
|
218 |
+
self.layers = [
|
219 |
+
FlaxHubertGroupNormConvLayer(
|
220 |
+
self.config, layer_id=0, name=str(0), dtype=self.dtype
|
221 |
+
)
|
222 |
+
] + [
|
223 |
+
FlaxHubertNoLayerNormConvLayer(
|
224 |
+
self.config, layer_id=i, name=str(i), dtype=self.dtype
|
225 |
+
)
|
226 |
+
for i in range(1, self.config.num_feat_extract_layers)
|
227 |
+
]
|
228 |
+
else:
|
229 |
+
raise ValueError(
|
230 |
+
f"`config.feat_extract_norm` is {self.config.feat_extract_norm}, but has to be one of ['group',"
|
231 |
+
" 'layer']"
|
232 |
+
)
|
233 |
+
|
234 |
+
def __call__(self, hidden_states):
|
235 |
+
for i, conv_layer in enumerate(self.layers):
|
236 |
+
hidden_states = conv_layer(hidden_states)
|
237 |
+
return hidden_states
|
238 |
+
|
239 |
+
|
240 |
+
class FlaxHubertFeatureEncoder(nn.Module):
|
241 |
+
config: HubertConfig
|
242 |
+
dtype: jnp.dtype = jnp.float32
|
243 |
+
|
244 |
+
def setup(self):
|
245 |
+
self.conv_layers = FlaxConvLayersCollection(self.config, dtype=self.dtype)
|
246 |
+
|
247 |
+
def __call__(self, input_values, freeze_feature_encoder=False):
|
248 |
+
hidden_states = input_values[:, :, None]
|
249 |
+
hidden_states = self.conv_layers(hidden_states)
|
250 |
+
if freeze_feature_encoder:
|
251 |
+
hidden_states = jax.lax.stop_gradient(hidden_states)
|
252 |
+
return hidden_states
|
253 |
+
|
254 |
+
|
255 |
+
class FlaxHubertFeatureProjection(nn.Module):
|
256 |
+
config: HubertConfig
|
257 |
+
dtype: jnp.dtype = jnp.float32
|
258 |
+
|
259 |
+
def setup(self):
|
260 |
+
self.feat_proj_layer_norm = self.config.feat_proj_layer_norm
|
261 |
+
if self.feat_proj_layer_norm:
|
262 |
+
self.layer_norm = nn.LayerNorm(
|
263 |
+
epsilon=self.config.layer_norm_eps, dtype=self.dtype
|
264 |
+
)
|
265 |
+
self.projection = nn.Dense(
|
266 |
+
self.config.hidden_size,
|
267 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
268 |
+
dtype=self.dtype,
|
269 |
+
)
|
270 |
+
self.dropout = nn.Dropout(rate=self.config.feat_proj_dropout)
|
271 |
+
|
272 |
+
def __call__(self, hidden_states, deterministic=True):
|
273 |
+
if self.feat_proj_layer_norm:
|
274 |
+
hidden_states = self.layer_norm(hidden_states)
|
275 |
+
hidden_states = self.projection(hidden_states)
|
276 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
277 |
+
return hidden_states
|
278 |
+
|
279 |
+
|
280 |
+
class FlaxHubertAttention(nn.Module):
|
281 |
+
config: HubertConfig
|
282 |
+
embed_dim: int
|
283 |
+
num_heads: int
|
284 |
+
dropout: float = 0.0
|
285 |
+
bias: bool = True
|
286 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
287 |
+
|
288 |
+
def setup(self) -> None:
|
289 |
+
self.head_dim = self.embed_dim // self.num_heads
|
290 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
291 |
+
raise ValueError(
|
292 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
293 |
+
f" and `num_heads`: {self.num_heads})."
|
294 |
+
)
|
295 |
+
self.scaling = self.head_dim**-0.5
|
296 |
+
|
297 |
+
dense = partial(
|
298 |
+
nn.Dense,
|
299 |
+
self.embed_dim,
|
300 |
+
use_bias=self.bias,
|
301 |
+
dtype=self.dtype,
|
302 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
303 |
+
)
|
304 |
+
|
305 |
+
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
|
306 |
+
self.out_proj = dense()
|
307 |
+
|
308 |
+
self.dropout_layer = nn.Dropout(rate=self.dropout)
|
309 |
+
|
310 |
+
def _split_heads(self, hidden_states):
|
311 |
+
return hidden_states.reshape(
|
312 |
+
hidden_states.shape[:2] + (self.num_heads, self.head_dim)
|
313 |
+
)
|
314 |
+
|
315 |
+
def _merge_heads(self, hidden_states):
|
316 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
|
317 |
+
|
318 |
+
def __call__(
|
319 |
+
self,
|
320 |
+
hidden_states: jnp.ndarray,
|
321 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
322 |
+
output_attentions: bool = False,
|
323 |
+
deterministic: bool = True,
|
324 |
+
) -> Tuple[jnp.ndarray, Optional[jnp.ndarray]]:
|
325 |
+
"""Input shape: Batch x Time x Channel"""
|
326 |
+
|
327 |
+
# get query, key, value proj for self_attention
|
328 |
+
query_states = self.q_proj(hidden_states)
|
329 |
+
key_states = self.k_proj(hidden_states)
|
330 |
+
value_states = self.v_proj(hidden_states)
|
331 |
+
|
332 |
+
query_states = self._split_heads(query_states)
|
333 |
+
key_states = self._split_heads(key_states)
|
334 |
+
value_states = self._split_heads(value_states)
|
335 |
+
|
336 |
+
if attention_mask is not None:
|
337 |
+
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
|
338 |
+
attention_bias = lax.select(
|
339 |
+
attention_mask > 0,
|
340 |
+
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
|
341 |
+
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(
|
342 |
+
self.dtype
|
343 |
+
),
|
344 |
+
)
|
345 |
+
else:
|
346 |
+
attention_bias = None
|
347 |
+
|
348 |
+
dropout_rng = None
|
349 |
+
if not deterministic and self.dropout > 0.0:
|
350 |
+
dropout_rng = self.make_rng("dropout")
|
351 |
+
|
352 |
+
attn_weights = dot_product_attention_weights(
|
353 |
+
query_states,
|
354 |
+
key_states,
|
355 |
+
bias=attention_bias,
|
356 |
+
dropout_rng=dropout_rng,
|
357 |
+
dropout_rate=self.dropout,
|
358 |
+
broadcast_dropout=True,
|
359 |
+
deterministic=deterministic,
|
360 |
+
dtype=self.dtype,
|
361 |
+
precision=None,
|
362 |
+
)
|
363 |
+
|
364 |
+
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
|
365 |
+
attn_output = self._merge_heads(attn_output)
|
366 |
+
attn_output = self.out_proj(attn_output)
|
367 |
+
|
368 |
+
return attn_output, attn_weights
|
369 |
+
|
370 |
+
|
371 |
+
class FlaxHubertFeedForward(nn.Module):
|
372 |
+
config: HubertConfig
|
373 |
+
dtype: jnp.dtype = jnp.float32
|
374 |
+
|
375 |
+
def setup(self):
|
376 |
+
self.intermediate_dropout = nn.Dropout(self.config.activation_dropout)
|
377 |
+
|
378 |
+
self.intermediate_dense = nn.Dense(
|
379 |
+
self.config.intermediate_size, dtype=self.dtype
|
380 |
+
)
|
381 |
+
if isinstance(self.config.hidden_act, str):
|
382 |
+
self.intermediate_activation = ACT2FN[self.config.hidden_act]
|
383 |
+
else:
|
384 |
+
self.intermediate_activation = self.config.hidden_act
|
385 |
+
|
386 |
+
self.output_dense = nn.Dense(self.config.hidden_size, dtype=self.dtype)
|
387 |
+
self.output_dropout = nn.Dropout(self.config.activation_dropout)
|
388 |
+
|
389 |
+
def __call__(self, hidden_states, deterministic=True):
|
390 |
+
hidden_states = self.intermediate_dense(hidden_states)
|
391 |
+
hidden_states = self.intermediate_activation(hidden_states)
|
392 |
+
hidden_states = self.intermediate_dropout(
|
393 |
+
hidden_states, deterministic=deterministic
|
394 |
+
)
|
395 |
+
|
396 |
+
hidden_states = self.output_dense(hidden_states)
|
397 |
+
hidden_states = self.output_dropout(hidden_states, deterministic=deterministic)
|
398 |
+
|
399 |
+
return hidden_states
|
400 |
+
|
401 |
+
|
402 |
+
class FlaxHubertEncoderLayer(nn.Module):
|
403 |
+
config: HubertConfig
|
404 |
+
dtype: jnp.dtype = jnp.float32
|
405 |
+
|
406 |
+
def setup(self):
|
407 |
+
self.attention = FlaxHubertAttention(
|
408 |
+
config=self.config,
|
409 |
+
embed_dim=self.config.hidden_size,
|
410 |
+
num_heads=self.config.num_attention_heads,
|
411 |
+
dropout=self.config.attention_dropout,
|
412 |
+
dtype=self.dtype,
|
413 |
+
)
|
414 |
+
self.dropout = nn.Dropout(self.config.hidden_dropout)
|
415 |
+
self.layer_norm = nn.LayerNorm(
|
416 |
+
epsilon=self.config.layer_norm_eps, dtype=self.dtype
|
417 |
+
)
|
418 |
+
self.feed_forward = FlaxHubertFeedForward(self.config, dtype=self.dtype)
|
419 |
+
self.final_layer_norm = nn.LayerNorm(
|
420 |
+
epsilon=self.config.layer_norm_eps, dtype=self.dtype
|
421 |
+
)
|
422 |
+
|
423 |
+
def __call__(
|
424 |
+
self,
|
425 |
+
hidden_states,
|
426 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
427 |
+
output_attentions: bool = False,
|
428 |
+
deterministic=True,
|
429 |
+
):
|
430 |
+
attn_residual = hidden_states
|
431 |
+
hidden_states, attn_weights = self.attention(
|
432 |
+
hidden_states=hidden_states,
|
433 |
+
attention_mask=attention_mask,
|
434 |
+
output_attentions=output_attentions,
|
435 |
+
deterministic=deterministic,
|
436 |
+
)
|
437 |
+
|
438 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
439 |
+
hidden_states = attn_residual + hidden_states
|
440 |
+
|
441 |
+
hidden_states = self.layer_norm(hidden_states)
|
442 |
+
hidden_states = hidden_states + self.feed_forward(
|
443 |
+
hidden_states, deterministic=deterministic
|
444 |
+
)
|
445 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
446 |
+
|
447 |
+
outputs = (hidden_states,)
|
448 |
+
|
449 |
+
if output_attentions:
|
450 |
+
outputs += (attn_weights,)
|
451 |
+
|
452 |
+
return outputs
|
453 |
+
|
454 |
+
|
455 |
+
class FlaxHubertEncoderLayerStableLayerNorm(nn.Module):
|
456 |
+
config: HubertConfig
|
457 |
+
dtype: jnp.dtype = jnp.float32
|
458 |
+
|
459 |
+
def setup(self):
|
460 |
+
self.attention = FlaxHubertAttention(
|
461 |
+
config=self.config,
|
462 |
+
embed_dim=self.config.hidden_size,
|
463 |
+
num_heads=self.config.num_attention_heads,
|
464 |
+
dropout=self.config.attention_dropout,
|
465 |
+
dtype=self.dtype,
|
466 |
+
)
|
467 |
+
self.dropout = nn.Dropout(self.config.hidden_dropout)
|
468 |
+
self.layer_norm = nn.LayerNorm(
|
469 |
+
epsilon=self.config.layer_norm_eps, dtype=self.dtype
|
470 |
+
)
|
471 |
+
self.feed_forward = FlaxHubertFeedForward(self.config, dtype=self.dtype)
|
472 |
+
self.final_layer_norm = nn.LayerNorm(
|
473 |
+
epsilon=self.config.layer_norm_eps, dtype=self.dtype
|
474 |
+
)
|
475 |
+
|
476 |
+
def __call__(
|
477 |
+
self,
|
478 |
+
hidden_states,
|
479 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
480 |
+
output_attentions: bool = False,
|
481 |
+
deterministic=True,
|
482 |
+
):
|
483 |
+
attn_residual = hidden_states
|
484 |
+
hidden_states = self.layer_norm(hidden_states)
|
485 |
+
hidden_states, attn_weights = self.attention(
|
486 |
+
hidden_states=hidden_states,
|
487 |
+
attention_mask=attention_mask,
|
488 |
+
output_attentions=output_attentions,
|
489 |
+
deterministic=deterministic,
|
490 |
+
)
|
491 |
+
|
492 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
493 |
+
hidden_states = attn_residual + hidden_states
|
494 |
+
|
495 |
+
hidden_states = hidden_states + self.feed_forward(
|
496 |
+
self.final_layer_norm(hidden_states), deterministic=deterministic
|
497 |
+
)
|
498 |
+
|
499 |
+
outputs = (hidden_states,)
|
500 |
+
|
501 |
+
if output_attentions:
|
502 |
+
outputs += (attn_weights,)
|
503 |
+
|
504 |
+
return outputs
|
505 |
+
|
506 |
+
|
507 |
+
class FlaxHubertLayerCollection(nn.Module):
|
508 |
+
config: HubertConfig
|
509 |
+
dtype: jnp.dtype = jnp.float32
|
510 |
+
|
511 |
+
def setup(self):
|
512 |
+
self.layers = [
|
513 |
+
FlaxHubertEncoderLayer(self.config, name=str(i), dtype=self.dtype)
|
514 |
+
for i in range(self.config.num_hidden_layers)
|
515 |
+
]
|
516 |
+
|
517 |
+
def __call__(
|
518 |
+
self,
|
519 |
+
hidden_states,
|
520 |
+
attention_mask=None,
|
521 |
+
deterministic: bool = True,
|
522 |
+
output_attentions: bool = False,
|
523 |
+
output_hidden_states: bool = False,
|
524 |
+
return_dict: bool = True,
|
525 |
+
):
|
526 |
+
all_attentions = () if output_attentions else None
|
527 |
+
all_hidden_states = () if output_hidden_states else None
|
528 |
+
|
529 |
+
for i, layer in enumerate(self.layers):
|
530 |
+
if output_hidden_states:
|
531 |
+
all_hidden_states += (hidden_states,)
|
532 |
+
|
533 |
+
layer_outputs = layer(
|
534 |
+
hidden_states,
|
535 |
+
attention_mask,
|
536 |
+
deterministic=deterministic,
|
537 |
+
output_attentions=output_attentions,
|
538 |
+
)
|
539 |
+
|
540 |
+
hidden_states = layer_outputs[0]
|
541 |
+
|
542 |
+
if output_attentions:
|
543 |
+
all_attentions += (layer_outputs[1],)
|
544 |
+
|
545 |
+
if output_hidden_states:
|
546 |
+
all_hidden_states += (hidden_states,)
|
547 |
+
|
548 |
+
outputs = (hidden_states, all_hidden_states, all_attentions)
|
549 |
+
|
550 |
+
if not return_dict:
|
551 |
+
return tuple(v for v in outputs if v is not None)
|
552 |
+
|
553 |
+
return FlaxBaseModelOutput(
|
554 |
+
last_hidden_state=hidden_states,
|
555 |
+
hidden_states=all_hidden_states,
|
556 |
+
attentions=all_attentions,
|
557 |
+
)
|
558 |
+
|
559 |
+
|
560 |
+
class FlaxHubertEncoder(nn.Module):
|
561 |
+
config: HubertConfig
|
562 |
+
dtype: jnp.dtype = jnp.float32
|
563 |
+
|
564 |
+
def setup(self):
|
565 |
+
self.pos_conv_embed = FlaxHubertPositionalConvEmbedding(
|
566 |
+
self.config, dtype=self.dtype
|
567 |
+
)
|
568 |
+
self.layer_norm = nn.LayerNorm(
|
569 |
+
epsilon=self.config.layer_norm_eps, dtype=self.dtype
|
570 |
+
)
|
571 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout)
|
572 |
+
self.layers = FlaxHubertLayerCollection(self.config, dtype=self.dtype)
|
573 |
+
|
574 |
+
def __call__(
|
575 |
+
self,
|
576 |
+
hidden_states,
|
577 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
578 |
+
output_attentions: bool = False,
|
579 |
+
output_hidden_states: bool = False,
|
580 |
+
return_dict: bool = True,
|
581 |
+
deterministic: bool = True,
|
582 |
+
):
|
583 |
+
if attention_mask is not None:
|
584 |
+
# make sure padded tokens are not attended to
|
585 |
+
hidden_states = jnp.where(
|
586 |
+
jnp.broadcast_to(attention_mask[:, :, None], hidden_states.shape),
|
587 |
+
hidden_states,
|
588 |
+
0,
|
589 |
+
)
|
590 |
+
|
591 |
+
position_embeddings = self.pos_conv_embed(hidden_states)
|
592 |
+
|
593 |
+
hidden_states = hidden_states + position_embeddings
|
594 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
595 |
+
|
596 |
+
outputs = self.layers(
|
597 |
+
hidden_states,
|
598 |
+
attention_mask,
|
599 |
+
deterministic=deterministic,
|
600 |
+
output_attentions=output_attentions,
|
601 |
+
output_hidden_states=output_hidden_states,
|
602 |
+
return_dict=return_dict,
|
603 |
+
)
|
604 |
+
|
605 |
+
last_hidden_state = self.layer_norm(outputs[0])
|
606 |
+
|
607 |
+
hidden_states = None
|
608 |
+
if output_hidden_states:
|
609 |
+
hidden_states = outputs[1]
|
610 |
+
hidden_states = hidden_states[:-1] + (last_hidden_state,)
|
611 |
+
|
612 |
+
if not return_dict:
|
613 |
+
outputs = (last_hidden_state, hidden_states) + (
|
614 |
+
outputs[2:] if output_hidden_states else outputs[1:]
|
615 |
+
)
|
616 |
+
return tuple(v for v in outputs if v is not None)
|
617 |
+
|
618 |
+
return FlaxBaseModelOutput(
|
619 |
+
last_hidden_state=last_hidden_state,
|
620 |
+
hidden_states=hidden_states,
|
621 |
+
attentions=outputs.attentions,
|
622 |
+
)
|
623 |
+
|
624 |
+
|
625 |
+
class FlaxHubertLayerStableLayerNormCollection(nn.Module):
|
626 |
+
config: HubertConfig
|
627 |
+
dtype: jnp.dtype = jnp.float32
|
628 |
+
|
629 |
+
def setup(self):
|
630 |
+
self.layers = [
|
631 |
+
FlaxHubertEncoderLayerStableLayerNorm(
|
632 |
+
self.config, name=str(i), dtype=self.dtype
|
633 |
+
)
|
634 |
+
for i in range(self.config.num_hidden_layers)
|
635 |
+
]
|
636 |
+
|
637 |
+
def __call__(
|
638 |
+
self,
|
639 |
+
hidden_states,
|
640 |
+
attention_mask=None,
|
641 |
+
deterministic: bool = True,
|
642 |
+
output_attentions: bool = False,
|
643 |
+
output_hidden_states: bool = False,
|
644 |
+
return_dict: bool = True,
|
645 |
+
):
|
646 |
+
all_attentions = () if output_attentions else None
|
647 |
+
all_hidden_states = () if output_hidden_states else None
|
648 |
+
|
649 |
+
for i, layer in enumerate(self.layers):
|
650 |
+
if output_hidden_states:
|
651 |
+
all_hidden_states += (hidden_states,)
|
652 |
+
|
653 |
+
layer_outputs = layer(
|
654 |
+
hidden_states,
|
655 |
+
attention_mask,
|
656 |
+
deterministic=deterministic,
|
657 |
+
output_attentions=output_attentions,
|
658 |
+
)
|
659 |
+
|
660 |
+
hidden_states = layer_outputs[0]
|
661 |
+
|
662 |
+
if output_attentions:
|
663 |
+
all_attentions += (layer_outputs[1],)
|
664 |
+
|
665 |
+
if output_hidden_states:
|
666 |
+
all_hidden_states += (hidden_states,)
|
667 |
+
|
668 |
+
outputs = (hidden_states, all_hidden_states, all_attentions)
|
669 |
+
|
670 |
+
if not return_dict:
|
671 |
+
return tuple(v for v in outputs if v is not None)
|
672 |
+
|
673 |
+
return FlaxBaseModelOutput(
|
674 |
+
last_hidden_state=hidden_states,
|
675 |
+
hidden_states=all_hidden_states,
|
676 |
+
attentions=all_attentions,
|
677 |
+
)
|
678 |
+
|
679 |
+
|
680 |
+
class FlaxHubertEncoderStableLayerNorm(nn.Module):
|
681 |
+
config: HubertConfig
|
682 |
+
dtype: jnp.dtype = jnp.float32
|
683 |
+
|
684 |
+
def setup(self):
|
685 |
+
self.pos_conv_embed = FlaxHubertPositionalConvEmbedding(
|
686 |
+
self.config, dtype=self.dtype
|
687 |
+
)
|
688 |
+
self.layer_norm = nn.LayerNorm(
|
689 |
+
epsilon=self.config.layer_norm_eps, dtype=self.dtype
|
690 |
+
)
|
691 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout)
|
692 |
+
self.layers = FlaxHubertLayerStableLayerNormCollection(
|
693 |
+
self.config, dtype=self.dtype
|
694 |
+
)
|
695 |
+
|
696 |
+
def __call__(
|
697 |
+
self,
|
698 |
+
hidden_states,
|
699 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
700 |
+
output_attentions: bool = False,
|
701 |
+
output_hidden_states: bool = False,
|
702 |
+
return_dict: bool = True,
|
703 |
+
deterministic: bool = True,
|
704 |
+
):
|
705 |
+
if attention_mask is not None:
|
706 |
+
hidden_states = jnp.where(
|
707 |
+
jnp.broadcast_to(attention_mask[:, :, None], hidden_states.shape),
|
708 |
+
hidden_states,
|
709 |
+
0,
|
710 |
+
)
|
711 |
+
|
712 |
+
position_embeddings = self.pos_conv_embed(hidden_states)
|
713 |
+
|
714 |
+
hidden_states = hidden_states + position_embeddings
|
715 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
716 |
+
|
717 |
+
outputs = self.layers(
|
718 |
+
hidden_states,
|
719 |
+
attention_mask,
|
720 |
+
deterministic=deterministic,
|
721 |
+
output_attentions=output_attentions,
|
722 |
+
output_hidden_states=output_hidden_states,
|
723 |
+
return_dict=return_dict,
|
724 |
+
)
|
725 |
+
|
726 |
+
last_hidden_state = self.layer_norm(outputs[0])
|
727 |
+
|
728 |
+
hidden_states = None
|
729 |
+
if output_hidden_states:
|
730 |
+
hidden_states = outputs[1]
|
731 |
+
hidden_states = hidden_states[:-1] + (last_hidden_state,)
|
732 |
+
|
733 |
+
if not return_dict:
|
734 |
+
outputs = (last_hidden_state, hidden_states) + (
|
735 |
+
outputs[2:] if output_hidden_states else outputs[1:]
|
736 |
+
)
|
737 |
+
return tuple(v for v in outputs if v is not None)
|
738 |
+
|
739 |
+
return FlaxBaseModelOutput(
|
740 |
+
last_hidden_state=last_hidden_state,
|
741 |
+
hidden_states=hidden_states,
|
742 |
+
attentions=outputs.attentions,
|
743 |
+
)
|
744 |
+
|
745 |
+
|
746 |
+
class FlaxHubertPreTrainedModel(FlaxPreTrainedModel):
|
747 |
+
config_class = HubertConfig
|
748 |
+
base_model_prefix = "hubert"
|
749 |
+
main_input_name = "input_values"
|
750 |
+
module_class: nn.Module = None
|
751 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
752 |
+
|
753 |
+
def __init__(
|
754 |
+
self,
|
755 |
+
config: HubertConfig,
|
756 |
+
input_shape: Tuple = (1, 1024),
|
757 |
+
seed: int = 0,
|
758 |
+
dtype: jnp.dtype = jnp.float32,
|
759 |
+
_do_init: bool = True,
|
760 |
+
**kwargs,
|
761 |
+
):
|
762 |
+
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
763 |
+
super().__init__(
|
764 |
+
config,
|
765 |
+
module,
|
766 |
+
input_shape=input_shape,
|
767 |
+
seed=seed,
|
768 |
+
dtype=dtype,
|
769 |
+
_do_init=_do_init,
|
770 |
+
)
|
771 |
+
|
772 |
+
def init_weights(
|
773 |
+
self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None
|
774 |
+
) -> FrozenDict:
|
775 |
+
input_values = jnp.zeros(input_shape, dtype="i4")
|
776 |
+
attention_mask = jnp.ones_like(input_values)
|
777 |
+
params_rng, dropout_rng = jax.random.split(rng, 2)
|
778 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
779 |
+
|
780 |
+
random_params = self.module.init(
|
781 |
+
rngs, input_values, attention_mask, return_dict=False
|
782 |
+
)["params"]
|
783 |
+
|
784 |
+
if params is not None:
|
785 |
+
random_params = flatten_dict(unfreeze(random_params))
|
786 |
+
params = flatten_dict(unfreeze(params))
|
787 |
+
for missing_key in self._missing_keys:
|
788 |
+
params[missing_key] = random_params[missing_key]
|
789 |
+
self._missing_keys = set()
|
790 |
+
return freeze(unflatten_dict(params))
|
791 |
+
else:
|
792 |
+
return random_params
|
793 |
+
|
794 |
+
def __call__(
|
795 |
+
self,
|
796 |
+
input_values,
|
797 |
+
attention_mask=None,
|
798 |
+
mask_time_indices=None,
|
799 |
+
params: dict = None,
|
800 |
+
dropout_rng: jax.random.PRNGKey = None,
|
801 |
+
train: bool = False,
|
802 |
+
output_attentions: Optional[bool] = None,
|
803 |
+
output_hidden_states: Optional[bool] = None,
|
804 |
+
freeze_feature_encoder: bool = False,
|
805 |
+
return_dict: Optional[bool] = None,
|
806 |
+
):
|
807 |
+
output_attentions = (
|
808 |
+
output_attentions
|
809 |
+
if output_attentions is not None
|
810 |
+
else self.config.output_attentions
|
811 |
+
)
|
812 |
+
output_hidden_states = (
|
813 |
+
output_hidden_states
|
814 |
+
if output_hidden_states is not None
|
815 |
+
else self.config.output_hidden_states
|
816 |
+
)
|
817 |
+
return_dict = (
|
818 |
+
return_dict if return_dict is not None else self.config.return_dict
|
819 |
+
)
|
820 |
+
|
821 |
+
batch_size, sequence_length = input_values.shape
|
822 |
+
|
823 |
+
if attention_mask is None:
|
824 |
+
attention_mask = jnp.ones((batch_size, sequence_length))
|
825 |
+
|
826 |
+
rngs = {}
|
827 |
+
if dropout_rng is not None:
|
828 |
+
rngs["dropout"] = dropout_rng
|
829 |
+
|
830 |
+
inputs = {"params": params or self.params}
|
831 |
+
|
832 |
+
return self.module.apply(
|
833 |
+
inputs,
|
834 |
+
jnp.array(input_values, dtype="f4"),
|
835 |
+
jnp.array(attention_mask, dtype="i4"),
|
836 |
+
mask_time_indices,
|
837 |
+
not train,
|
838 |
+
output_attentions,
|
839 |
+
output_hidden_states,
|
840 |
+
freeze_feature_encoder,
|
841 |
+
return_dict,
|
842 |
+
rngs=rngs,
|
843 |
+
)
|
844 |
+
|
845 |
+
|
846 |
+
class FlaxHubertModule(nn.Module):
|
847 |
+
config: HubertConfig
|
848 |
+
dtype: jnp.dtype = jnp.float32
|
849 |
+
|
850 |
+
def setup(self):
|
851 |
+
self.feature_extractor = FlaxHubertFeatureEncoder(self.config, dtype=self.dtype)
|
852 |
+
self.feature_projection = FlaxHubertFeatureProjection(
|
853 |
+
self.config, dtype=self.dtype
|
854 |
+
)
|
855 |
+
|
856 |
+
if self.config.mask_time_prob > 0.0 or self.config.mask_feature_prob > 0.0:
|
857 |
+
self.masked_spec_embed = self.param(
|
858 |
+
"masked_spec_embed",
|
859 |
+
nn.initializers.uniform(dtype=self.dtype),
|
860 |
+
(self.config.hidden_size,),
|
861 |
+
)
|
862 |
+
|
863 |
+
if self.config.do_stable_layer_norm:
|
864 |
+
self.encoder = FlaxHubertEncoderStableLayerNorm(self.config)
|
865 |
+
else:
|
866 |
+
self.encoder = FlaxHubertEncoder(self.config)
|
867 |
+
|
868 |
+
def __call__(
|
869 |
+
self,
|
870 |
+
input_values: Optional[jnp.ndarray],
|
871 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
872 |
+
mask_time_indices: Optional[jnp.ndarray] = None,
|
873 |
+
deterministic: bool = True,
|
874 |
+
output_attentions: Optional[bool] = None,
|
875 |
+
output_hidden_states: Optional[bool] = None,
|
876 |
+
freeze_feature_encoder: bool = False,
|
877 |
+
return_dict: Optional[bool] = None,
|
878 |
+
) -> Union[Tuple, FlaxHubertOutput]:
|
879 |
+
output_attentions = (
|
880 |
+
output_attentions
|
881 |
+
if output_attentions is not None
|
882 |
+
else self.config.output_attentions
|
883 |
+
)
|
884 |
+
output_hidden_states = (
|
885 |
+
output_hidden_states
|
886 |
+
if output_hidden_states is not None
|
887 |
+
else self.config.output_hidden_states
|
888 |
+
)
|
889 |
+
return_dict = (
|
890 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
891 |
+
)
|
892 |
+
|
893 |
+
extract_features = self.feature_extractor(input_values, freeze_feature_encoder)
|
894 |
+
|
895 |
+
if attention_mask is not None:
|
896 |
+
attention_mask = self._get_feature_vector_attention_mask(
|
897 |
+
extract_features.shape[1], attention_mask
|
898 |
+
)
|
899 |
+
|
900 |
+
hidden_states = self.feature_projection(
|
901 |
+
extract_features, deterministic=deterministic
|
902 |
+
)
|
903 |
+
if mask_time_indices is not None:
|
904 |
+
hidden_states = jnp.where(
|
905 |
+
jnp.broadcast_to(mask_time_indices[:, :, None], hidden_states.shape),
|
906 |
+
jnp.broadcast_to(
|
907 |
+
self.masked_spec_embed[None, None, :], hidden_states.shape
|
908 |
+
),
|
909 |
+
hidden_states,
|
910 |
+
)
|
911 |
+
|
912 |
+
encoder_outputs = self.encoder(
|
913 |
+
hidden_states,
|
914 |
+
attention_mask=attention_mask,
|
915 |
+
deterministic=deterministic,
|
916 |
+
output_attentions=output_attentions,
|
917 |
+
output_hidden_states=output_hidden_states,
|
918 |
+
return_dict=return_dict,
|
919 |
+
)
|
920 |
+
|
921 |
+
hidden_states = encoder_outputs[0]
|
922 |
+
|
923 |
+
if not return_dict:
|
924 |
+
return (hidden_states,) + encoder_outputs[1:]
|
925 |
+
|
926 |
+
return FlaxHubertOutput(
|
927 |
+
last_hidden_state=hidden_states,
|
928 |
+
hidden_states=encoder_outputs.hidden_states,
|
929 |
+
attentions=encoder_outputs.attentions,
|
930 |
+
extract_features=extract_features,
|
931 |
+
)
|
932 |
+
|
933 |
+
def _get_feat_extract_output_lengths(self, input_lengths: Union[jnp.ndarray, int]):
|
934 |
+
def _conv_out_length(input_length, kernel_size, stride):
|
935 |
+
return (input_length - kernel_size) // stride + 1
|
936 |
+
|
937 |
+
for kernel_size, stride in zip(
|
938 |
+
self.config.conv_kernel, self.config.conv_stride
|
939 |
+
):
|
940 |
+
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
|
941 |
+
|
942 |
+
return input_lengths
|
943 |
+
|
944 |
+
def _get_feature_vector_attention_mask(
|
945 |
+
self, feature_vector_length: int, attention_mask: jnp.ndarray
|
946 |
+
):
|
947 |
+
non_padded_lengths = attention_mask.cumsum(axis=-1)[:, -1]
|
948 |
+
|
949 |
+
output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths)
|
950 |
+
|
951 |
+
batch_size = attention_mask.shape[0]
|
952 |
+
|
953 |
+
attention_mask = jnp.zeros(
|
954 |
+
(batch_size, feature_vector_length), dtype=attention_mask.dtype
|
955 |
+
)
|
956 |
+
attention_mask = attention_mask.at[
|
957 |
+
jnp.arange(attention_mask.shape[0]), output_lengths - 1
|
958 |
+
].set(1)
|
959 |
+
attention_mask = jnp.flip(jnp.flip(attention_mask, -1).cumsum(-1), -1).astype(
|
960 |
+
"bool"
|
961 |
+
)
|
962 |
+
return attention_mask
|
963 |
+
|
964 |
+
|
965 |
+
class FlaxHubertModel(FlaxHubertPreTrainedModel):
|
966 |
+
module_class = FlaxHubertModule
|
preprocessor_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": false,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0,
|
7 |
+
"return_attention_mask": false,
|
8 |
+
"sampling_rate": 16000
|
9 |
+
}
|