Model save
Browse files
README.md
CHANGED
@@ -23,7 +23,7 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
-
value: 0.
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
33 |
|
34 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
-
- Loss: 0.
|
37 |
-
- Accuracy: 0.
|
38 |
|
39 |
## Model description
|
40 |
|
@@ -62,17 +62,22 @@ The following hyperparameters were used during training:
|
|
62 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
63 |
- lr_scheduler_type: linear
|
64 |
- lr_scheduler_warmup_ratio: 0.1
|
65 |
-
- num_epochs:
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
70 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
|
78 |
### Framework versions
|
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
+
value: 0.9122203098106713
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
33 |
|
34 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.2119
|
37 |
+
- Accuracy: 0.9122
|
38 |
|
39 |
## Model description
|
40 |
|
|
|
62 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
63 |
- lr_scheduler_type: linear
|
64 |
- lr_scheduler_warmup_ratio: 0.1
|
65 |
+
- num_epochs: 10
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
70 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
71 |
+
| 0.5888 | 1.0 | 41 | 0.4436 | 0.8348 |
|
72 |
+
| 0.3118 | 2.0 | 82 | 0.3028 | 0.8692 |
|
73 |
+
| 0.2284 | 3.0 | 123 | 0.2879 | 0.8795 |
|
74 |
+
| 0.203 | 4.0 | 164 | 0.2368 | 0.8950 |
|
75 |
+
| 0.2254 | 5.0 | 205 | 0.2276 | 0.8985 |
|
76 |
+
| 0.1976 | 6.0 | 246 | 0.2339 | 0.8967 |
|
77 |
+
| 0.1603 | 7.0 | 287 | 0.2191 | 0.9036 |
|
78 |
+
| 0.1556 | 8.0 | 328 | 0.2249 | 0.9036 |
|
79 |
+
| 0.1488 | 9.0 | 369 | 0.2018 | 0.9071 |
|
80 |
+
| 0.158 | 10.0 | 410 | 0.2119 | 0.9122 |
|
81 |
|
82 |
|
83 |
### Framework versions
|