--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy base_model: google/vit-base-patch16-224 model-index: - name: histo_train_vit results: - task: type: image-classification name: Image Classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - type: accuracy value: 0.825 name: Accuracy --- # histo_train_vit This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7340 - Accuracy: 0.825 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0481 | 1.67 | 10 | 0.4926 | 0.825 | | 0.3714 | 3.33 | 20 | 0.3388 | 0.9 | | 0.0642 | 5.0 | 30 | 0.3255 | 0.875 | | 0.0199 | 6.67 | 40 | 0.4111 | 0.875 | | 0.0074 | 8.33 | 50 | 0.3334 | 0.925 | | 0.0024 | 10.0 | 60 | 0.3710 | 0.9 | | 0.0131 | 11.67 | 70 | 0.5366 | 0.85 | | 0.0067 | 13.33 | 80 | 0.5172 | 0.875 | | 0.0152 | 15.0 | 90 | 0.4835 | 0.9 | | 0.0058 | 16.67 | 100 | 0.3979 | 0.875 | | 0.0005 | 18.33 | 110 | 0.5964 | 0.825 | | 0.0008 | 20.0 | 120 | 0.7340 | 0.825 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2