Update handler.py
Browse files- handler.py +31 -47
handler.py
CHANGED
@@ -1,52 +1,45 @@
|
|
1 |
import torch
|
2 |
-
from
|
3 |
-
AutoTokenizer,
|
4 |
-
AutoModelForCausalLM,
|
5 |
-
pipeline,
|
6 |
-
LogitsProcessor,
|
7 |
-
LogitsProcessorList
|
8 |
-
)
|
9 |
from typing import Any, List, Dict
|
10 |
|
11 |
|
12 |
-
class FixedVocabLogitsProcessor
|
13 |
"""
|
14 |
-
A custom
|
15 |
-
to a fixed set of token IDs, masking out everything else.
|
16 |
"""
|
17 |
|
18 |
def __init__(self, allowed_ids: set[int], fill_value=float('-inf')):
|
19 |
-
"""
|
20 |
-
Args:
|
21 |
-
allowed_ids (set[int]): Token IDs allowed for generation.
|
22 |
-
fill_value (float): Value used to mask disallowed tokens, default -inf.
|
23 |
-
"""
|
24 |
self.allowed_ids = allowed_ids
|
25 |
self.fill_value = fill_value
|
26 |
|
27 |
-
def
|
28 |
"""
|
29 |
-
|
30 |
-
input_ids: shape (batch_size, sequence_length)
|
31 |
-
scores: shape (batch_size, vocab_size) - pre-softmax logits for the next token
|
32 |
-
Returns:
|
33 |
-
scores: shape (batch_size, vocab_size) with masked logits
|
34 |
"""
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
scores[b, token_id] = self.fill_value
|
40 |
-
return scores
|
41 |
|
42 |
|
43 |
class EndpointHandler:
|
44 |
def __init__(self, path=""):
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
48 |
|
49 |
def __call__(self, data: Any) -> List[Dict[str, str]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
# Extract inputs and parameters
|
51 |
inputs = data.pop("inputs", data)
|
52 |
parameters = data.pop("parameters", {})
|
@@ -58,29 +51,20 @@ class EndpointHandler:
|
|
58 |
# Define allowed tokens dynamically
|
59 |
allowed_ids = set()
|
60 |
for word in vocab_list:
|
61 |
-
for tid in self.
|
62 |
-
allowed_ids.add(tid)
|
63 |
-
for tid in self.tokenizer.encode(" " + word, add_special_tokens=False):
|
64 |
allowed_ids.add(tid)
|
65 |
|
66 |
-
#
|
67 |
-
|
68 |
-
|
69 |
-
# Prepare input IDs
|
70 |
-
input_ids = self.tokenizer(inputs, return_tensors="pt").input_ids.to(self.model.device)
|
71 |
|
72 |
-
#
|
73 |
output_ids = self.model.generate(
|
74 |
-
input_ids
|
75 |
-
|
76 |
-
|
77 |
-
num_beams=parameters.get("num_beams", 1),
|
78 |
-
do_sample=parameters.get("do_sample", False),
|
79 |
-
pad_token_id=self.tokenizer.eos_token_id,
|
80 |
-
no_repeat_ngram_size=parameters.get("no_repeat_ngram_size", 3)
|
81 |
)
|
82 |
|
83 |
# Decode the output
|
84 |
-
generated_text = self.
|
85 |
|
86 |
return [{"generated_text": generated_text}]
|
|
|
1 |
import torch
|
2 |
+
from llama_cpp import Llama # Library for GGUF model handling
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from typing import Any, List, Dict
|
4 |
|
5 |
|
6 |
+
class FixedVocabLogitsProcessor:
|
7 |
"""
|
8 |
+
A custom logits processor for GGUF-compatible models.
|
|
|
9 |
"""
|
10 |
|
11 |
def __init__(self, allowed_ids: set[int], fill_value=float('-inf')):
|
|
|
|
|
|
|
|
|
|
|
12 |
self.allowed_ids = allowed_ids
|
13 |
self.fill_value = fill_value
|
14 |
|
15 |
+
def apply(self, logits: torch.FloatTensor):
|
16 |
"""
|
17 |
+
Modify logits to restrict to allowed token IDs.
|
|
|
|
|
|
|
|
|
18 |
"""
|
19 |
+
for token_id in range(len(logits)):
|
20 |
+
if token_id not in self.allowed_ids:
|
21 |
+
logits[token_id] = self.fill_value
|
22 |
+
return logits
|
|
|
|
|
23 |
|
24 |
|
25 |
class EndpointHandler:
|
26 |
def __init__(self, path=""):
|
27 |
+
"""
|
28 |
+
Initialize the GGUF model handler.
|
29 |
+
Args:
|
30 |
+
path (str): Path to the GGUF file.
|
31 |
+
"""
|
32 |
+
self.model = Llama(model_path=path)
|
33 |
+
self.tokenizer = self.model.tokenizer # GGUF-specific tokenizer, if available
|
34 |
|
35 |
def __call__(self, data: Any) -> List[Dict[str, str]]:
|
36 |
+
"""
|
37 |
+
Handle the request, performing inference with a restricted vocabulary.
|
38 |
+
Args:
|
39 |
+
data (Any): Input data.
|
40 |
+
Returns:
|
41 |
+
List[Dict[str, str]]: Generated output.
|
42 |
+
"""
|
43 |
# Extract inputs and parameters
|
44 |
inputs = data.pop("inputs", data)
|
45 |
parameters = data.pop("parameters", {})
|
|
|
51 |
# Define allowed tokens dynamically
|
52 |
allowed_ids = set()
|
53 |
for word in vocab_list:
|
54 |
+
for tid in self.model.tokenize(word):
|
|
|
|
|
55 |
allowed_ids.add(tid)
|
56 |
|
57 |
+
# Tokenize input
|
58 |
+
input_ids = self.model.tokenize(inputs)
|
|
|
|
|
|
|
59 |
|
60 |
+
# Perform inference
|
61 |
output_ids = self.model.generate(
|
62 |
+
input_ids,
|
63 |
+
max_tokens=parameters.get("max_length", 30),
|
64 |
+
logits_processor=lambda logits: FixedVocabLogitsProcessor(allowed_ids).apply(logits)
|
|
|
|
|
|
|
|
|
65 |
)
|
66 |
|
67 |
# Decode the output
|
68 |
+
generated_text = self.model.detokenize(output_ids)
|
69 |
|
70 |
return [{"generated_text": generated_text}]
|