--- license: other library_name: peft tags: - generated_from_trainer base_model: meta-llama/Meta-Llama-3-8B-Instruct model-index: - name: workspace/llama3-8b-pippa results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: meta-llama/Meta-Llama-3-8B-Instruct model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: # - path: taozi555/bagel # type: sharegpt - path: MinervaAI/Aesir-Preview type: sharegpt - path: KaraKaraWitch/PIPPA-ShareGPT-formatted type: sharegpt chat_template: chatml dataset_prepared_path: last_run_prepared val_set_size: 0.001 output_dir: /workspace/llama3-8b-pippa adapter: qlora lora_model_dir: sequence_len: 8192 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: lora_modules_to_save: - embed_tokens - lm_head wandb_project: waifu wandb_entity: wandb_watch: wandb_run_id: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 adam_beta2: 0.95 adam_epsilon: 0.00001 max_grad_norm: 1.0 lr_scheduler: cosine learning_rate: 0.0002 optimizer: paged_adamw_32bit train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false #bfloat16: true gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 eval_steps: 100 eval_table_size: eval_table_max_new_tokens: eval_sample_packing: false saves_per_epoch: save_steps: 100 save_total_limit: 2 debug: #deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16_cpuoffload_all.json weight_decay: 0.1 fsdp: fsdp_config: special_tokens: eos_token: "<|im_end|>" pad_token: "<|im_end|>" tokens: - "<|im_start|>" ```

# workspace/llama3-8b-pippa This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5946 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.6425 | 0.0 | 1 | 4.4372 | | 1.9054 | 0.21 | 100 | 1.6499 | | 1.6536 | 0.41 | 200 | 1.6101 | | 1.7332 | 0.62 | 300 | 1.5973 | | 1.7975 | 0.82 | 400 | 1.6079 | | 1.669 | 1.01 | 500 | 1.5992 | | 1.5612 | 1.21 | 600 | 1.5926 | | 1.6936 | 1.42 | 700 | 1.5868 | | 1.6197 | 1.62 | 800 | 1.5707 | | 1.6831 | 1.83 | 900 | 1.5690 | | 1.4055 | 2.02 | 1000 | 1.5902 | | 1.4736 | 2.22 | 1100 | 1.5987 | | 1.4137 | 2.43 | 1200 | 1.5899 | | 1.4527 | 2.63 | 1300 | 1.5854 | | 1.507 | 2.84 | 1400 | 1.5814 | | 1.4538 | 3.03 | 1500 | 1.5900 | | 1.4501 | 3.24 | 1600 | 1.5938 | | 1.3612 | 3.44 | 1700 | 1.5928 | | 1.4801 | 3.65 | 1800 | 1.5922 | | 1.3502 | 3.85 | 1900 | 1.5946 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0.dev0 - Pytorch 2.2.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0