File size: 1,888 Bytes
0bd2792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: InstaDeepAI/nucleotide-transformer-500m-1000g
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: nucleotide-transformer-500m-1000g_ft_BioS74_1kbpHG19_DHSs_H3K27AC_one_shot
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# nucleotide-transformer-500m-1000g_ft_BioS74_1kbpHG19_DHSs_H3K27AC_one_shot

This model is a fine-tuned version of [InstaDeepAI/nucleotide-transformer-500m-1000g](https://huggingface.co/InstaDeepAI/nucleotide-transformer-500m-1000g) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2833
- F1 Score: 0.8293
- Precision: 0.8095
- Recall: 0.85
- Accuracy: 0.8158
- Auc: 0.8833
- Prc: 0.8868

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc    | Prc    |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:|
| 0.1201        | 13.1579 | 500  | 1.2833          | 0.8293   | 0.8095    | 0.85   | 0.8158   | 0.8833 | 0.8868 |


### Framework versions

- Transformers 4.46.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 2.18.0
- Tokenizers 0.20.0