--- license: bsd-3-clause base_model: LongSafari/hyenadna-small-32k-seqlen-hf tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: hyenadna-small-32k-seqlen-hf_ft_BioS45_1kbpHG19_DHSs_H3K27AC results: [] --- # hyenadna-small-32k-seqlen-hf_ft_BioS45_1kbpHG19_DHSs_H3K27AC This model is a fine-tuned version of [LongSafari/hyenadna-small-32k-seqlen-hf](https://huggingface.co/LongSafari/hyenadna-small-32k-seqlen-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5632 - F1 Score: 0.8023 - Precision: 0.8234 - Recall: 0.7823 - Accuracy: 0.7989 - Auc: 0.8729 - Prc: 0.8701 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:| | 0.5477 | 0.2103 | 500 | 0.4845 | 0.7868 | 0.7923 | 0.7815 | 0.7791 | 0.8482 | 0.8295 | | 0.4789 | 0.4207 | 1000 | 0.4609 | 0.8003 | 0.7943 | 0.8065 | 0.7901 | 0.8624 | 0.8547 | | 0.4505 | 0.6310 | 1500 | 0.4569 | 0.7972 | 0.8068 | 0.7879 | 0.7909 | 0.8700 | 0.8670 | | 0.4558 | 0.8414 | 2000 | 0.4471 | 0.8289 | 0.7664 | 0.9024 | 0.8056 | 0.8753 | 0.8637 | | 0.4376 | 1.0517 | 2500 | 0.4435 | 0.8324 | 0.7840 | 0.8871 | 0.8136 | 0.8786 | 0.8708 | | 0.4299 | 1.2621 | 3000 | 0.4596 | 0.8284 | 0.7795 | 0.8839 | 0.8090 | 0.8770 | 0.8676 | | 0.4329 | 1.4724 | 3500 | 0.4409 | 0.8133 | 0.8203 | 0.8065 | 0.8069 | 0.8805 | 0.8781 | | 0.4187 | 1.6828 | 4000 | 0.4495 | 0.8063 | 0.8246 | 0.7887 | 0.8023 | 0.8802 | 0.8798 | | 0.4211 | 1.8931 | 4500 | 0.4363 | 0.8303 | 0.7925 | 0.8718 | 0.8141 | 0.8807 | 0.8734 | | 0.3818 | 2.1035 | 5000 | 0.4506 | 0.8350 | 0.7932 | 0.8815 | 0.8183 | 0.8809 | 0.8717 | | 0.3524 | 2.3138 | 5500 | 0.4775 | 0.8184 | 0.7968 | 0.8411 | 0.8052 | 0.8785 | 0.8745 | | 0.3601 | 2.5242 | 6000 | 0.4678 | 0.8263 | 0.7770 | 0.8823 | 0.8065 | 0.8758 | 0.8688 | | 0.3708 | 2.7345 | 6500 | 0.4836 | 0.8226 | 0.8064 | 0.8395 | 0.8111 | 0.8769 | 0.8743 | | 0.3911 | 2.9449 | 7000 | 0.4733 | 0.8207 | 0.7912 | 0.8524 | 0.8056 | 0.8748 | 0.8666 | | 0.3136 | 3.1552 | 7500 | 0.5632 | 0.8023 | 0.8234 | 0.7823 | 0.7989 | 0.8729 | 0.8701 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.0