File size: 3,160 Bytes
2bfe950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: bsd-3-clause
base_model: LongSafari/hyenadna-small-32k-seqlen-hf
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: hyenadna-small-32k-seqlen-hf_ft_BioS2_1kbpHG19_DHSs_H3K27AC
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hyenadna-small-32k-seqlen-hf_ft_BioS2_1kbpHG19_DHSs_H3K27AC

This model is a fine-tuned version of [LongSafari/hyenadna-small-32k-seqlen-hf](https://huggingface.co/LongSafari/hyenadna-small-32k-seqlen-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4638
- F1 Score: 0.8073
- Precision: 0.8018
- Recall: 0.8128
- Accuracy: 0.7952
- Auc: 0.8728
- Prc: 0.8651

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc    | Prc    |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:|
| 0.5671        | 0.0841 | 500  | 0.5418          | 0.7721   | 0.7343    | 0.8141 | 0.7464   | 0.7985 | 0.7787 |
| 0.5022        | 0.1683 | 1000 | 0.5186          | 0.7826   | 0.7680    | 0.7978 | 0.7661   | 0.8279 | 0.8137 |
| 0.5022        | 0.2524 | 1500 | 0.5044          | 0.8036   | 0.7154    | 0.9168 | 0.7635   | 0.8360 | 0.8138 |
| 0.4865        | 0.3366 | 2000 | 0.4858          | 0.7887   | 0.7708    | 0.8074 | 0.7716   | 0.8440 | 0.8350 |
| 0.4913        | 0.4207 | 2500 | 0.4686          | 0.8062   | 0.7560    | 0.8635 | 0.7809   | 0.8553 | 0.8451 |
| 0.472         | 0.5049 | 3000 | 0.4715          | 0.8107   | 0.7494    | 0.8830 | 0.7824   | 0.8580 | 0.8462 |
| 0.4776        | 0.5890 | 3500 | 0.4581          | 0.8064   | 0.7682    | 0.8485 | 0.7849   | 0.8630 | 0.8574 |
| 0.4571        | 0.6732 | 4000 | 0.4620          | 0.8162   | 0.7506    | 0.8945 | 0.7874   | 0.8674 | 0.8548 |
| 0.4702        | 0.7573 | 4500 | 0.4550          | 0.8009   | 0.7995    | 0.8023 | 0.7895   | 0.8683 | 0.8600 |
| 0.4533        | 0.8415 | 5000 | 0.4493          | 0.8121   | 0.7891    | 0.8364 | 0.7957   | 0.8729 | 0.8617 |
| 0.4401        | 0.9256 | 5500 | 0.4472          | 0.8134   | 0.7823    | 0.8469 | 0.7949   | 0.8743 | 0.8662 |
| 0.4505        | 1.0098 | 6000 | 0.4459          | 0.8100   | 0.7892    | 0.8320 | 0.7940   | 0.8732 | 0.8668 |
| 0.3944        | 1.0939 | 6500 | 0.4638          | 0.8073   | 0.8018    | 0.8128 | 0.7952   | 0.8728 | 0.8651 |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.0